library(dslabs)
data(murders)

Data frame

bs5th<-data.frame(name=c("ali","ahmad","sania","sara","adil","sharjeel","subhan","arbaz","asad","hassan","waleed")
                  ,cgpa=c(2.5,3.2,3.9,2.99,3.10,2.99,2.91,2.87,3.2,3.52,2.50)
                  ,grade=c("D","B","A","C","B","A","B","B","B","A","D"))
bs5th
##        name cgpa grade
## 1       ali 2.50     D
## 2     ahmad 3.20     B
## 3     sania 3.90     A
## 4      sara 2.99     C
## 5      adil 3.10     B
## 6  sharjeel 2.99     A
## 7    subhan 2.91     B
## 8     arbaz 2.87     B
## 9      asad 3.20     B
## 10   hassan 3.52     A
## 11   waleed 2.50     D

Which have gpa greater then 3

ind<-bs5th$cgpa>3
bs5th$name[ind]
## [1] "ahmad"  "sania"  "adil"   "asad"   "hassan"

Which have grade equal to A

def<-bs5th$grade=="A"
bs5th$name[def]
## [1] "sania"    "sharjeel" "hassan"

Which have gpa greater then 3 and having grade A

bs5th$name[ind&def]
## [1] "sania"  "hassan"

Which have gpa greater then 3 or having grade A

bs5th$name[ind|def]
## [1] "ahmad"    "sania"    "adil"     "sharjeel" "asad"     "hassan"

Exercise 3.15

3.15.1 Compute the per 100,000 murder rate for each state and store it in an object called murder_rate. Then use logical operators to create a logical vector named low that tells us which entries of murder_rate are lower than 1.

murder_rate <- (murders$total / murders$population) * 100000
low <- murder_rate < 1
low
##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [13]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [25] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
## [37] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
## [49] FALSE FALSE  TRUE
murders$state[low]
##  [1] "Hawaii"        "Idaho"         "Iowa"          "Maine"        
##  [5] "Minnesota"     "New Hampshire" "North Dakota"  "Oregon"       
##  [9] "South Dakota"  "Utah"          "Vermont"       "Wyoming"
murder_rate
##  [1]  2.8244238  2.6751860  3.6295273  3.1893901  3.3741383  1.2924531
##  [7]  2.7139722  4.2319369 16.4527532  3.3980688  3.7903226  0.5145920
## [13]  0.7655102  2.8369608  2.1900730  0.6893484  2.2081106  2.6732010
## [19]  7.7425810  0.8280881  5.0748655  1.8021791  4.1786225  0.9992600
## [25]  4.0440846  5.3598917  1.2128379  1.7521372  3.1104763  0.3798036
## [31]  2.7980319  3.2537239  2.6679599  2.9993237  0.5947151  2.6871225
## [37]  2.9589340  0.9396843  3.5977513  1.5200933  4.4753235  0.9825837
## [43]  3.4509357  3.2013603  0.7959810  0.3196211  3.1246001  1.3829942
## [49]  1.4571013  1.7056487  0.8871131

3.15.2 Now use the results from the previous exercise and the function which to determine the indices of murder_rate associated with values lower than 1.

low_indices <- which(low)
low_indices
##  [1] 12 13 16 20 24 30 35 38 42 45 46 51

3.15.3 Use the results from the previous exercise to report the names of the states with murder rates lower than 1.

states_with_low_murder_rate <- murders$state[low_indices]
states_with_low_murder_rate
##  [1] "Hawaii"        "Idaho"         "Iowa"          "Maine"        
##  [5] "Minnesota"     "New Hampshire" "North Dakota"  "Oregon"       
##  [9] "South Dakota"  "Utah"          "Vermont"       "Wyoming"

3.15.4 Now extend the code from exercise 2 and 3 to report the states in the Northeast with murder rates lower than 1. Hint: use the previously defned logical vector low and the logical operator &.

northeast_states <- c("Connecticut", "Maine", "Massachusetts", "New Hampshire", "New Jersey", "New York", "Pennsylvania", "Rhode Island", "Vermont")
northeast_low_indices <- which(low & murders$state %in% northeast_states)
northeast_states_with_low_murder_rate <- murders$state[northeast_low_indices]
northeast_states_with_low_murder_rate
## [1] "Maine"         "New Hampshire" "Vermont"

3.15.5 In a previous exercise we computed the murder rate for each state and the average of these numbers.How many states are below the average?

average_murder_rate <- mean(murder_rate)
states_below_average <- sum(murder_rate < average_murder_rate)
states_below_average
## [1] 27

3.15.6 Use the match function to identify the states with abbreviations AK, MI, and IA. Hint: start by defning an index of the entries of murders$abb that match the three abbreviations, then use the [ operator to extract the states.

abbreviations_to_find <- c("AK", "MI", "IA")
indices <- match(abbreviations_to_find, murders$abb)
states_with_abbreviations <- murders$state[indices]
states_with_abbreviations
## [1] "Alaska"   "Michigan" "Iowa"

3.15.7 Use the %in% operator to create a logical vector that answers the question: which of the following are actual abbreviations: MA, ME, MI, MO, MU ?

abbreviations_to_check <- c("MA", "ME", "MI", "MO", "MU")
actual_abbreviations <- abbreviations_to_check %in% murders$abb
actual_abbreviations
## [1]  TRUE  TRUE  TRUE  TRUE FALSE
murders$state[actual_abbreviations]
##  [1] "Alabama"              "Alaska"               "Arizona"             
##  [4] "Arkansas"             "Colorado"             "Connecticut"         
##  [7] "Delaware"             "District of Columbia" "Georgia"             
## [10] "Hawaii"               "Idaho"                "Illinois"            
## [13] "Iowa"                 "Kansas"               "Kentucky"            
## [16] "Louisiana"            "Maryland"             "Massachusetts"       
## [19] "Michigan"             "Minnesota"            "Missouri"            
## [22] "Montana"              "Nebraska"             "Nevada"              
## [25] "New Jersey"           "New Mexico"           "New York"            
## [28] "North Carolina"       "Ohio"                 "Oklahoma"            
## [31] "Oregon"               "Pennsylvania"         "South Carolina"      
## [34] "South Dakota"         "Tennessee"            "Texas"               
## [37] "Vermont"              "Virginia"             "Washington"          
## [40] "West Virginia"        "Wyoming"

3.15.8 Extend the code you used in exercise 7 to report the one entry that is not an actual abbreviation.Hint: use the ! operator, which turns FALSE into TRUE and vice versa, then which to obtain an index.

not_actual_abbreviation_index <- which(!actual_abbreviations)
not_actual_abbreviation <- abbreviations_to_check[not_actual_abbreviation_index]
not_actual_abbreviation
## [1] "MU"