Fit_4 <- lm(taste ~ Acetic + H2S + Lactic, data = cheddar)

{broom} R package

tidy()

library(broom)
tidy(Fit_4)  %>%
  kable( format = "markdown",digits=4)
term estimate std.error statistic p.value
(Intercept) -28.8768 19.7354 -1.4632 0.1554
Acetic 0.3277 4.4598 0.0735 0.9420
H2S 3.9118 1.2484 3.1334 0.0042
Lactic 19.6705 8.6291 2.2796 0.0311

glance()

glance(Fit_4) %>%
  kable( format = "markdown",digits=4)
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.6518 0.6116 10.1307 16.2214 0 3 -109.8888 229.7775 236.7835 2668.411 26 30

augment()

augment(Fit_4) %>%
  head() %>%
  kable( format = "markdown",digits=4)
taste Acetic H2S Lactic .fitted .resid .std.resid .hat .sigma .cooksd
12.3 4.543 3.135 0.86 1.7924 10.5076 1.1421 0.1753 10.0688 0.0693
20.9 5.159 5.043 1.53 22.6374 -1.7374 -0.1784 0.0759 10.3250 0.0007
39.0 5.366 5.438 1.57 25.0372 13.9628 1.4215 0.0599 9.9217 0.0322
47.9 5.759 7.496 1.81 37.9375 9.9625 1.0299 0.0883 10.1184 0.0257
5.6 4.663 3.807 0.99 7.0177 -1.4177 -0.1499 0.1288 10.3269 0.0008
25.9 5.697 7.601 1.09 24.1652 1.7348 0.1952 0.2304 10.3238 0.0029