Please read up on the source code.
gts example
These are infant mortality counts. This data set is an example of
gts, where the total infant mortality count in Australia
can be first disaggregated by sex then by
state, or vice versa.
library(hts)
## Loading required package: forecast
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
str(infantgts)
## List of 3
## $ bts : Time-Series [1:71, 1:16] from 1933 to 2003: 738 886 760 908 851 807 833 873 1000 912 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : NULL
## .. ..$ : chr [1:16] "NSW female" "VIC female" "QLD female" "SA female" ...
## $ groups: 'gmatrix' int [1:4, 1:16] 1 1 1 1 1 1 2 2 1 1 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:4] "Total" "Sex" "State" "Bottom"
## .. ..$ : chr [1:16] "NSW female" "VIC female" "QLD female" "SA female" ...
## $ labels:List of 2
## ..$ Sex : chr [1:2] "Sex/female" "Sex/male"
## ..$ State: chr [1:8] "State/NSW" "State/VIC" "State/QLD" "State/SA" ...
## - attr(*, "class")= chr "gts"
?infantgts
table(infantgts$labels[][1])
## Sex
## Sex/female Sex/male
## 1 1
table(infantgts$labels[][2])
## State
## State/ACT State/NSW State/NT State/QLD State/SA State/TAS State/VIC State/WA
## 1 1 1 1 1 1 1 1
plot(infantgts, levels = 1)
plot(infantgts, levels = 2)
plot(infantgts, levels = 3, cex = .1)
?forecast
## Help on topic 'forecast' was found in the following packages:
##
## Package Library
## generics /Library/Frameworks/R.framework/Versions/4.2/Resources/library
## forecast /Users/arvindsharma/Library/R/x86_64/4.2/library
##
##
## Using the first match ...
fcasts3.comb <- forecast(object = infantgts, # time series model to produce the forecasts
h = 4, # The forecast horison
method = "comb",
fmethod = "ets"
)
summary(fcasts3.comb)
## Grouped Time Series
## 4 Levels
## Number of groups at each level: 1 2 8 16
## Total number of series: 27
## Number of observations in each historical series: 71
## Number of forecasts per series: 4
## Top level series of forecasts:
## Time Series:
## Start = 2004
## End = 2007
## Frequency = 1
## [1] 1194.008 1168.812 1143.615 1118.418
##
## Method: Optimal combination forecasts
## Forecast method: ETS
plot(fcasts3.comb)
Use the aggts function in hts package - The
time series from selected levels of a hierarchical/grouped time series
or a forecasted hierarchical/grouped time series are returned as a
multivariate time series.
?aggts
agg_gts2 <- aggts(y = fcasts3.comb,
levels = 1,
forecasts = FALSE)
plot(agg_gts2)
agg_gts1 <- aggts(y = fcasts3.comb, # n object of class {gts}.
levels = 1,
forecasts = TRUE # defualt value
)
plot(agg_gts1)