#Kaplan Meier HRS vs Non-HRS
#MODEL 1 Multivariate Cox regression model for 90 days alive or dead
Characteristic | N | Model 1 mutilvariate cox ph regression | ||
---|---|---|---|---|
HR1 | 95% CI1 | p-value | ||
age_admission | 332 | 1.01 | 1.00, 1.02 | 0.154 |
sex | 332 | |||
1 | — | — | ||
2 | 0.97 | 0.73, 1.28 | 0.816 | |
White | 332 | |||
0 | — | — | ||
1 | 1.43 | 1.03, 1.98 | 0.034 | |
hispanic_race | 332 | |||
0 | — | — | ||
1 | 0.67 | 0.42, 1.09 | 0.105 | |
hrs | 332 | |||
Non-HRS | — | — | ||
HRS | 1.34 | 0.89, 2.03 | 0.166 | |
liver_transplant_listed | 332 | |||
0 | — | — | ||
1 | 0.20 | 0.13, 0.32 | <0.001 | |
study_site | 332 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.23 | 0.91, 1.66 | 0.171 | |
MELD_Na_baseline | 332 | 1.04 | 1.02, 1.05 | <0.001 |
pressor | 332 | |||
0 | — | — | ||
1 | 1.59 | 1.12, 2.26 | 0.010 | |
initial_rrt | 332 | |||
1 | — | — | ||
2 | 2.74 | 1.88, 4.00 | <0.001 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
#MODEL 1 Sensitivity: Sensitivity Multivariate cox regression model for 90 days alive or dead
Characteristic | Sensitivity model 1 mutilvariate cox ph regression | ||
---|---|---|---|
HR1 | 95% CI1 | p-value | |
hrs_atn_group | |||
ATN | — | — | |
HRS | 1.11 | 0.71, 1.73 | 0.642 |
age_admission | 1.00 | 0.99, 1.02 | 0.494 |
sex | |||
1 | — | — | |
2 | 0.94 | 0.69, 1.29 | 0.706 |
White | |||
0 | — | — | |
1 | 1.21 | 0.84, 1.74 | 0.309 |
hispanic_race | |||
0 | — | — | |
1 | 0.73 | 0.41, 1.28 | 0.267 |
liver_transplant_listed | |||
0 | — | — | |
1 | 0.23 | 0.14, 0.37 | <0.001 |
study_site | |||
High_volume_RRT | — | — | |
Low_volume_RRT | 1.39 | 0.99, 1.93 | 0.055 |
MELD_Na_baseline | 1.04 | 1.02, 1.06 | <0.001 |
pressor | |||
0 | — | — | |
1 | 1.22 | 0.82, 1.82 | 0.320 |
initial_rrt | |||
1 | — | — | |
2 | 2.68 | 1.75, 4.09 | <0.001 |
1 HR = Hazard Ratio, CI = Confidence Interval |
#MODEL 2 Test interaction
Characteristic | N | Interaction cox ph regression | ||
---|---|---|---|---|
HR1 | 95% CI1 | p-value | ||
hrs | 332 | |||
Non-HRS | — | — | ||
HRS | 1.29 | 0.71, 2.33 | 0.400 | |
study_site | 332 | |||
High_volume_RRT | — | — | ||
Low_volume_RRT | 1.22 | 0.88, 1.69 | 0.237 | |
age_admission | 332 | 1.01 | 1.00, 1.02 | 0.157 |
sex | 332 | |||
1 | — | — | ||
2 | 0.97 | 0.73, 1.28 | 0.823 | |
White | 332 | |||
0 | — | — | ||
1 | 1.43 | 1.03, 1.98 | 0.034 | |
hispanic_race | 332 | |||
0 | — | — | ||
1 | 0.67 | 0.42, 1.09 | 0.107 | |
liver_transplant_listed | 332 | |||
0 | — | — | ||
1 | 0.20 | 0.13, 0.32 | <0.001 | |
MELD_Na_baseline | 332 | 1.04 | 1.02, 1.05 | <0.001 |
pressor | 332 | |||
0 | — | — | ||
1 | 1.59 | 1.12, 2.26 | 0.009 | |
initial_rrt | 332 | |||
1 | — | — | ||
2 | 2.74 | 1.88, 4.00 | <0.001 | |
hrs * study_site | 332 | |||
HRS * Low_volume_RRT | 1.08 | 0.49, 2.39 | 0.855 | |
1 HR = Hazard Ratio, CI = Confidence Interval |
#MODEL 3 Multivariate cox regression model for 90 days alive or dead
Characteristic | Model 3 mutilvariate cox ph regression | ||
---|---|---|---|
HR1 | 95% CI1 | p-value | |
hrs | |||
Non-HRS | — | — | |
HRS | 0.80 | 0.54, 1.18 | 0.261 |
study_site | |||
High_volume_RRT | — | — | |
Low_volume_RRT | 1.02 | 0.76, 1.35 | 0.919 |
encephalopathy_admission | |||
0 | — | — | |
1 | 1.32 | 0.97, 1.79 | 0.077 |
MELD_Na_baseline | 1.02 | 1.01, 1.04 | 0.009 |
pressor | |||
0 | — | — | |
1 | 1.58 | 1.12, 2.23 | 0.010 |
initial_rrt | |||
1 | — | — | |
2 | 1.99 | 1.38, 2.87 | <0.001 |
1 HR = Hazard Ratio, CI = Confidence Interval |
#Supplementary Table S1
#Supplementary Table S2
#Supplementary Table S3
#addtional 1
#addtional 2
#addtional 1
master_rrt$status_90days <- as.factor(master_rrt$status_90days)
tidycmprsk::crr(Surv(time_90days,status_90days) ~ hrs,failcode=1,cencode=0, data = master_rrt) %>% tbl_regression(exp = TRUE)
Characteristic | HR1 | 95% CI1 | p-value |
---|---|---|---|
hrs | |||
Non-HRS | — | — | |
HRS | 0.72 | 0.50, 1.04 | 0.077 |
1 HR = Hazard Ratio, CI = Confidence Interval |
tidycmprsk::cuminc(Surv(time_90days,status_90days) ~ hrs , data = master_rrt ) %>%
ggcuminc() +
add_confidence_interval() +
add_risktable()+
scale_x_continuous(breaks = seq(0, 90, by = 30), limits = c(0, 90))+
theme(panel.background = element_rect(fill = "white", color = NA),
plot.background = element_rect(fill = "white", color = NA),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())+
annotate("text", x = 85, y = 0.35, label = paste("p =", 0.077), size = 4)
## Plotting outcome "1".
master_rrt_pressor_1 <- master_rrt %>% filter(pressor==1)
master_rrt_pressor_0 <- master_rrt %>% filter(pressor==0)
gmodels::CrossTable(master_rrt_pressor_1$final_type_of_aki,master_rrt_pressor_1$death_in_90days_status, prop.chisq=F,chisq = T,prop.r=F, prop.c=F,
prop.t=F)
## Registered S3 method overwritten by 'gdata':
## method from
## reorder.factor DescTools
## Warning in chisq.test(t, correct = FALSE, ...): Chi-squared approximation may
## be incorrect
##
##
## Cell Contents
## |-------------------------|
## | N |
## |-------------------------|
##
##
## Total Observations in Table: 258
##
##
## | master_rrt_pressor_1$death_in_90days_status
## master_rrt_pressor_1$final_type_of_aki | 0 | 1 | Row Total |
## ---------------------------------------|-----------|-----------|-----------|
## ATN | 52 | 122 | 174 |
## ---------------------------------------|-----------|-----------|-----------|
## HRS-AKI | 16 | 23 | 39 |
## ---------------------------------------|-----------|-----------|-----------|
## Other | 2 | 3 | 5 |
## ---------------------------------------|-----------|-----------|-----------|
## Prerenal | 7 | 9 | 16 |
## ---------------------------------------|-----------|-----------|-----------|
## Unable to diagnosis | 8 | 16 | 24 |
## ---------------------------------------|-----------|-----------|-----------|
## Column Total | 85 | 173 | 258 |
## ---------------------------------------|-----------|-----------|-----------|
##
##
## Statistics for All Table Factors
##
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 2.850067 d.f. = 4 p = 0.5832215
##
##
##
gmodels::CrossTable(master_rrt_pressor_0$final_type_of_aki,master_rrt_pressor_0$death_in_90days_status, prop.chisq=F,chisq = T,prop.r=F, prop.c=F,
prop.t=F)
## Warning in chisq.test(t, correct = FALSE, ...): Chi-squared approximation may
## be incorrect
##
##
## Cell Contents
## |-------------------------|
## | N |
## |-------------------------|
##
##
## Total Observations in Table: 114
##
##
## | master_rrt_pressor_0$death_in_90days_status
## master_rrt_pressor_0$final_type_of_aki | 0 | 1 | Row Total |
## ---------------------------------------|-----------|-----------|-----------|
## ATN | 28 | 32 | 60 |
## ---------------------------------------|-----------|-----------|-----------|
## HRS-AKI | 15 | 9 | 24 |
## ---------------------------------------|-----------|-----------|-----------|
## Other | 3 | 0 | 3 |
## ---------------------------------------|-----------|-----------|-----------|
## Prerenal | 6 | 3 | 9 |
## ---------------------------------------|-----------|-----------|-----------|
## Unable to diagnosis | 12 | 6 | 18 |
## ---------------------------------------|-----------|-----------|-----------|
## Column Total | 64 | 50 | 114 |
## ---------------------------------------|-----------|-----------|-----------|
##
##
## Statistics for All Table Factors
##
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 6.139969 d.f. = 4 p = 0.1889363
##
##
##