Commission, C. the G. I. R.-P. (2022, July 28). Students reach their full potential through further education pathways. Closing the Gap Information Repository - Productivity Commission. https://www.pc.gov.au/closing-the-gap-data/annual-data-report/2022/report/snapshot/socioeconomic/outcome-area6
Commission, C. the G. I. R.-P. (2023, March 7). Aboriginal and Torres Strait Islander students reach their full potential through further education pathways. Closing the Gap Information Repository - Productivity Commission. https://www.pc.gov.au/closing-the-gap-data/dashboard/socioeconomic/outcome-area6#:\~:text=Nationally%20in%202021%2C%2047.0%20per
Keating, J. (2003). Qualifications Frameworks in Australia. Journal of Education and Work, 16(3), 271–288. https://doi.org/10.1080/1363908032000099449
McLaughlin, P., Mills, A., Davis, P., Saha, S., & Hardie, M. (2013). Clearing the Pathway: Improving the Transition for Students Moving Between AQF Levels 5, 6 and 7. In Westernsydney.edu.au. UWS Research Direct Website. https://researchdirect.westernsydney.edu.au/islandora/object/uws:19012/
Polesel, J., & Keating, J. (2011). School completion targets and the “equivalence” of VET in the Australian context. Oxford Review of Education, 37(3), 367–382. https://doi.org/10.1080/03054985.2010.547316
---
title: "Aboriginal and Torres Strait Islander students reach their full potential through further education pathways"
output:
flexdashboard::flex_dashboard:
orientation: rows
social: menu
source_code: embed
---
```{r global-chunk-challenge, eval = TRUE, include = FALSE}
# Load required libraries
library(ggplot2)
library(tidyr)
library(dplyr)
library(sf)
library(RColorBrewer)
library(plotly)
library(flexdashboard)
# Set working directory
setwd("C:/Users/A S Computer/Downloads")
df <- read.csv("ctg-2023-ctg06-education-pathways-dataset.csv")
head(df)
# Clean and transform the data
df_new <- df %>%
filter(Table_Number == "CtG6A.1") %>%
filter(Measure == "People aged 25 to 34 years who have completed AQF Certificate level III or above") %>%
filter(Data_Source == "ABS (unpublished) Census of Population and Housing") %>%
filter(Unit == "%") %>%
select(Year, Measure, Age, Data_Source, Description3, Description5, NSW, Vic, Qld, WA, SA, Tas, ACT, NT, Aust )
head(df_new)
# Load the required libraries
library(ggplot2)
library(tidyr)
library(dplyr)
# Reshape the data to long format
long_data <- df_new %>%
select(-c(Measure, Age, Data_Source)) %>%
gather(key = "State", value = "Value", -c(Year, Description3, Description5))
# Ensure that the 'Value' column is numeric
long_data$Value <- as.numeric(as.character(long_data$Value))
# Reshape the data to long format
long_data1 <-long_data%>%
filter(Description5 == "Aboriginal and Torres Strait Islander people")
# Reshape the data to long format
long_data2 <-long_data%>%
filter(Description5 == "Non-Indigenous people")
# Create a plot with ggplot
p1 <- ggplot(long_data1, aes(x = Year, y = Value, color = State, group = interaction(State, Description3))) + # Group by State and Estimate Type
geom_line() +
geom_point(aes(shape = Description3), size = 3) +
labs(
x = "Year",
y = "Percentage",
linetype = "Estimate Type",
color = "State",
shape = "Estimate Type"
) +
scale_y_continuous(breaks = seq(0, 100, by = 20)) +
theme_minimal()
# Create a plot with ggplot
p2 <- ggplot(long_data2, aes(x = Year, y = Value, color = State, group = State)) +
geom_line() +
geom_point(aes(shape = Description3), size = 3) +
labs(
x = "Year",
y = "Percentage",
linetype = "Estimate Type",
color = "State",
shape = "Estimate Type"
) +
scale_y_continuous(breaks = seq(0, 100, by = 20)) +
theme_minimal()
# Filter and select specific columns
df_new2 <- df %>%
filter(Table_Number == "CtG6A.2",
Data_Source == "ABS (unpublished) Census of Population and Housing",
Unit == "%",
Description1 == "Completion of non-school qualifications of AQF Certificate level III or above",
Description2 == "25-34 years old") %>%
select(Measure, Data_Source, Description1,Year, Description5, Sex, Age, NSW, Vic, Qld, WA, SA, Tas, ACT, NT, Aust)
# Convert all relevant columns to numeric type
cols_to_convert <- c("NSW", "Vic", "Qld", "WA", "SA", "Tas", "ACT", "NT", "Aust")
df_new2[cols_to_convert] <- lapply(df_new2[cols_to_convert], as.numeric)
# Handle possible warning of NAs introduced by coercion if there are non-numeric characters in the data
warnings()
# Transform data to a long format
df_long2 <- df_new2 %>%
pivot_longer(cols = c(NSW, Vic, Qld, WA, SA, Tas, ACT, NT, Aust),
names_to = "State",
values_to = "Percentage")%>%
filter(State == "Aust")
# Print the head of the df_long2 to confirm the transformation
head(df_long2)
p3 = ggplot(df_long2, aes(x=as.factor(Year), y=Percentage, fill=Sex)) +
geom_bar(stat="identity", position=position_dodge(width=0.8), width=0.7) +
labs(x="Year",
y="Percentage") +
theme_minimal() +
facet_wrap(~Sex, scales = "free_x", ncol = 2, labeller = as_labeller(function(x) "")) + # Changed ncol to 2 for side by side plots
scale_fill_manual(values=c("Males"="blue", "Females"="lightpink")) + # Adjusted colors
theme(axis.text.x = element_text(angle = 45, hjust = 1))
# Filter and select specific columns
df_new3 <- df %>%
filter(Table_Number == "CtG6A.3",
Data_Source == "ABS (unpublished) Census of Population and Housing",
Unit == "%",
Description1 == "Completion of non-school qualifications of AQF Certificate level III or above",
Description2 == "25-34 years old",
Remoteness != "All areas") %>%
select(Measure, Data_Source, Description1,Remoteness, Year, Description5, Sex, Age, NSW, Vic, Qld, WA, SA, Tas, ACT, NT, Aust)
# Convert all relevant columns to numeric type
cols_to_convert <- c("NSW", "Vic", "Qld", "WA", "SA", "Tas", "ACT", "NT", "Aust")
df_new3[cols_to_convert] <- lapply(df_new3[cols_to_convert], as.numeric)
# Handle possible warning of NAs introduced by coercion if there are non-numeric characters in the data
warnings()
# Transform data to a long format
df_long3 <- df_new3 %>%
pivot_longer(cols = c(NSW, Vic, Qld, WA, SA, Tas, ACT, NT, Aust),
names_to = "State",
values_to = "Percentage")%>%
filter(State == "Aust")
# Print the head of the df_long2 to confirm the transformation
head(df_long3)
p4 = ggplot(df_long3, aes(x=as.factor(Year), y=Percentage, fill=Remoteness)) +
geom_bar(stat="identity", position=position_dodge(width=0.8), width=0.7) +
labs(x="Year",
y="Percentage") +
theme_minimal() +
facet_wrap(~Remoteness, scales = "free_x", ncol = 5, labeller = as_labeller(function(x) "")) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
# Filter and select specific columns
df_new4 <- df %>%
filter(Table_Number == "CtG6A.4",
Data_Source == "ABS (unpublished) Census of Population and Housing",
Unit == "%",
Description1 == "Completion of non-school qualifications of AQF Certificate level III or above",
Description2 == "25-34 years old") %>%
select(Measure, Data_Source, Description1,Description6, Year, Description5, Sex, Age, NSW, Vic, Qld, WA, SA, Tas, ACT, NT, Aust)
# Convert all relevant columns to numeric type
cols_to_convert <- c("NSW", "Vic", "Qld", "WA", "SA", "Tas", "ACT", "NT", "Aust")
df_new4[cols_to_convert] <- lapply(df_new4[cols_to_convert], as.numeric)
# Handle possible warning of NAs introduced by coercion if there are non-numeric characters in the data
warnings()
# Transform data to a long format
df_long4 <- df_new4 %>%
pivot_longer(cols = c(NSW, Vic, Qld, WA, SA, Tas, ACT, NT, Aust),
names_to = "State",
values_to = "Percentage")%>%
filter(State == "Aust")
# Print the head of the df_long2 to confirm the transformation
head(df_long4)
p5 = ggplot(df_long4, aes(x=as.factor(Year), y=Percentage, fill=Description6)) +
geom_bar(stat="identity", position=position_dodge(width=0.8), width=0.7) +
labs(x="Year",
y="Percentage") +
theme_minimal() +
facet_wrap(~Description6, scales = "free_x", ncol = 5, labeller = as_labeller(function(x) "")) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
# Filter and select specific columns
df_new5 <- df %>%
filter(Table_Number == "CtG6A.5",
Data_Source == "ABS (unpublished) Census of Population and Housing",
Unit == "%",
Description1 == "Completion of non-school qualifications of AQF Certificate level III or above",
Description2 == "25-34 years old") %>%
select(Measure, Data_Source, Description1,Description6, Year, Description5, Sex, Age, NSW, Vic, Qld, WA, SA, Tas, ACT, NT, Aust)
# Convert all relevant columns to numeric type
cols_to_convert <- c("NSW", "Vic", "Qld", "WA", "SA", "Tas", "ACT", "NT", "Aust")
df_new5[cols_to_convert] <- lapply(df_new5[cols_to_convert], as.numeric)
# Handle possible warning of NAs introduced by coercion if there are non-numeric characters in the data
warnings()
# Transform data to a long format
df_long5 <- df_new5 %>%
pivot_longer(cols = c(NSW, Vic, Qld, WA, SA, Tas, ACT, NT, Aust),
names_to = "State",
values_to = "Percentage")%>%
filter(State == "Aust")
# Print the head of the df_long2 to confirm the transformation
head(df_long5)
p6 = ggplot(df_long5, aes(x=as.factor(Year), y=Percentage, fill=Description6)) +
geom_bar(stat="identity", position=position_dodge(width=0.8), width=0.7) +
labs(x="Year",
y="Percentage") +
theme_minimal() +
facet_wrap(~Description6, scales = "free_x", ncol = 3, labeller = as_labeller(function(x) "")) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
# Filter and select specific columns
df_new6 <- df %>%
filter(Table_Number == "CtG6A.6",
Data_Source == "ABS (unpublished) Census of Population and Housing",
Unit == "%",
Description1 == "Completion of non-school qualifications of AQF Certificate level III or above",
Description2 == "25-34 years old") %>%
select(Measure, Data_Source, Description1,Description6, Year, Description5, Sex, Age, NSW, Vic, Qld, WA, SA, Tas, ACT, NT, Aust)
# Convert all relevant columns to numeric type
cols_to_convert <- c("NSW", "Vic", "Qld", "WA", "SA", "Tas", "ACT", "NT", "Aust")
df_new6[cols_to_convert] <- lapply(df_new6[cols_to_convert], as.numeric)
# Handle possible warning of NAs introduced by coercion if there are non-numeric characters in the data
warnings()
# Transform data to a long format
df_long6 <- df_new6 %>%
pivot_longer(cols = c(NSW, Vic, Qld, WA, SA, Tas, ACT, NT, Aust),
names_to = "State",
values_to = "Percentage")%>%
filter(State == "Aust")
# Print the head of the df_long2 to confirm the transformation
head(df_long6)
p7 = ggplot(df_long6, aes(x=as.factor(Year), y=Percentage, fill=Description6)) +
geom_bar(stat="identity", position=position_dodge(width=0.8), width=0.7) +
labs(x="Year",
y="Percentage") +
theme_minimal() +
facet_wrap(~Description6, scales = "free_x", ncol = 5, labeller = as_labeller(function(x) "")) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
p8 = ggplot(df_long6, aes(x=as.factor(Year), y=Percentage, fill=Description6)) +
geom_bar(stat="identity", position=position_stack(), width=0.7) +
labs(x="Year",
y="Percentage") +
theme_minimal() +
facet_wrap(~Description6, scales = "free_x", ncol = 5, labeller = as_labeller(function(x) "")) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```
Page 1
=======================================================================
Row
-----------------------------------------------------------------------
### Proportion of People Aged 25-34 with AQF Certificate III or Above by State for Aboriginal and Torres Strait Islander people
```{r, fig.align='center'}
ggplotly(p1)%>%
layout(autosize = F, width = 600, height = 220)
```
### Proportion of People Aged 25-34 with AQF Certificate III or Above by State for Non-Indigenous people
```{r, fig.align='center'}
ggplotly(p2)%>%
layout(autosize = F, width = 600, height = 220)
```
Row
-----------------------------------------------------------------------
### Completion of non-school qualifications of AQF Certificate level III or above, Aboriginal and Torres Strait Islander people,25-34 years old, Aust, by sex, by year
```{r, fig.align='center'}
ggplotly(p3)%>%
layout(autosize = F, width = 600, height = 220)
```
### Completion of non-school qualifications of AQF Certificate level III or above, Aboriginal and Torres Strait Islander people, 25-34 years old, Aust by remoteness area, by year
```{r, fig.align='center'}
ggplotly(p4)%>%
layout(autosize = F, width = 600, height = 220)
```
Page 2
=======================================================================
Row
-----------------------------------------------------------------------
### Completion of non-school qualifications of AQF Certificate level III or above,Aboriginal and Torres Strait Islander people, 25-34 years old, Aust by level of highest educational attainment, by year
```{r, fig.align='center'}
ggplotly(p7)%>%
layout(autosize = F, width = 600, height = 220)
```
### Completion of non-school qualifications of AQF Certificate level III or above,Aboriginal and Torres Strait Islander people, 25-34 years old, Aust by level of highest educational attainment, by year (Stack Plot)
```{r, fig.align='center'}
ggplotly(p8)%>%
layout(autosize = F, width = 600, height = 220)
```
Row
-----------------------------------------------------------------------
### Completion of non-school qualifications of AQF Certificate level III or above,Aboriginal and Torres Strait Islander people, 25-34 years old,** Aust by Index of Relative Socioeconomic Disadvantage (IRSD) quintile, by year
```{r, fig.align='center'}
ggplotly(p5)%>%
layout(autosize = F, width = 600, height = 220)
```
### Completion of non-school qualifications of AQF Certificate level III or above,Aboriginal and Torres Strait Islander people,25-34 years old, Aust by disability status, by year
```{r, fig.align='center'}
ggplotly(p6)%>%
layout(autosize = F, width = 600, height = 220)
```
References
=======================================================================
#### References
- Commission, C. the G. I. R.-P. (2022, July 28). Students reach their full potential through further education pathways. Closing the Gap Information Repository - Productivity Commission. https://www.pc.gov.au/closing-the-gap-data/annual-data-report/2022/report/snapshot/socioeconomic/outcome-area6
- Commission, C. the G. I. R.-P. (2023, March 7). Aboriginal and Torres Strait Islander students reach their full potential through further education pathways. Closing the Gap Information Repository - Productivity Commission. https://www.pc.gov.au/closing-the-gap-data/dashboard/socioeconomic/outcome-area6#:\~:text=Nationally%20in%202021%2C%2047.0%20per
- Keating, J. (2003). Qualifications Frameworks in Australia. Journal of Education and Work, 16(3), 271--288. https://doi.org/10.1080/1363908032000099449
- McLaughlin, P., Mills, A., Davis, P., Saha, S., & Hardie, M. (2013). Clearing the Pathway: Improving the Transition for Students Moving Between AQF Levels 5, 6 and 7. In Westernsydney.edu.au. UWS Research Direct Website. https://researchdirect.westernsydney.edu.au/islandora/object/uws:19012/
- Polesel, J., & Keating, J. (2011). School completion targets and the "equivalence" of VET in the Australian context. Oxford Review of Education, 37(3), 367--382. https://doi.org/10.1080/03054985.2010.547316