Department of Industrial Psychology
Stellenbosch University
South Africa
old.data <- read.csv(file.choose())
old.data
## i1 i2 i3 v1 v2 v3
## 1 3 4 5 3 4 5
## 2 2 3 4 2 3 4
## 3 1 2 3 1 2 3
## 4 6 5 4 6 5 4
## 5 NA NA NA NA NA NA
## 6 4 3 2 4 3 2
## 7 3 2 NA 3 2 NA
## 8 2 3 4 2 3 4
## 9 5 4 3 5 4 3
## 10 3 NA NA 3 NA NA
### Count the number of missing values per row
missing.row <- apply(is.na(old.data), 1, sum)
### Number of variables in the analysis
nvars <- ncol(old.data)
### Remove rows containing only NAs
new.data <- old.data[missing.row < nvars, ]
new.data
## i1 i2 i3 v1 v2 v3
## 1 3 4 5 3 4 5
## 2 2 3 4 2 3 4
## 3 1 2 3 1 2 3
## 4 6 5 4 6 5 4
## 6 4 3 2 4 3 2
## 7 3 2 NA 3 2 NA
## 8 2 3 4 2 3 4
## 9 5 4 3 5 4 3
## 10 3 NA NA 3 NA NA
OR
new.data2 <- old.data[!!rowSums(!is.na(old.data)),]
new.data2
## i1 i2 i3 v1 v2 v3
## 1 3 4 5 3 4 5
## 2 2 3 4 2 3 4
## 3 1 2 3 1 2 3
## 4 6 5 4 6 5 4
## 6 4 3 2 4 3 2
## 7 3 2 NA 3 2 NA
## 8 2 3 4 2 3 4
## 9 5 4 3 5 4 3
## 10 3 NA NA 3 NA NA