Department of Industrial Psychology

Stellenbosch University

South Africa

old.data <- read.csv(file.choose())

old.data
##    i1 i2 i3 v1 v2 v3
## 1   3  4  5  3  4  5
## 2   2  3  4  2  3  4
## 3   1  2  3  1  2  3
## 4   6  5  4  6  5  4
## 5  NA NA NA NA NA NA
## 6   4  3  2  4  3  2
## 7   3  2 NA  3  2 NA
## 8   2  3  4  2  3  4
## 9   5  4  3  5  4  3
## 10  3 NA NA  3 NA NA
### Count the number of missing values per row
missing.row <- apply(is.na(old.data), 1, sum)

### Number of variables in the analysis
nvars <- ncol(old.data)

### Remove rows containing only NAs
new.data <- old.data[missing.row < nvars, ]

new.data
##    i1 i2 i3 v1 v2 v3
## 1   3  4  5  3  4  5
## 2   2  3  4  2  3  4
## 3   1  2  3  1  2  3
## 4   6  5  4  6  5  4
## 6   4  3  2  4  3  2
## 7   3  2 NA  3  2 NA
## 8   2  3  4  2  3  4
## 9   5  4  3  5  4  3
## 10  3 NA NA  3 NA NA

OR

new.data2 <- old.data[!!rowSums(!is.na(old.data)),]

new.data2
##    i1 i2 i3 v1 v2 v3
## 1   3  4  5  3  4  5
## 2   2  3  4  2  3  4
## 3   1  2  3  1  2  3
## 4   6  5  4  6  5  4
## 6   4  3  2  4  3  2
## 7   3  2 NA  3  2 NA
## 8   2  3  4  2  3  4
## 9   5  4  3  5  4  3
## 10  3 NA NA  3 NA NA