library(readxl)
tga<- read_excel("C:/Users/emretoros/OneDrive/Projeler/2019_1001/Trust/2022_rr/kabul_sonrasi/anket/sahasonuc/tga_v3.xlsx")
library(tidyverse)
gul <- tga %>%
select(b01_num_r , #political interest
b06_internal_fa_rev, #internal efficacy
b04_rev, #importance of living under democratic administration
b06_external_fa , #external efficacy
a0406, #trust in government
c04_governmental_fa,#trust in state/bureaucratic organisations
b05_turnout_frq_rev, #turnout
)
gul_s <- data.frame(scale(gul, center=T, scale=T))
gul_s <- gul_s %>%
mutate(
gul_politics = (
b01_num_r +
b04_rev +
b06_external_fa +
a0406 +
c04_governmental_fa +
b05_turnout_frq_rev +
b06_internal_fa_rev
) / 7
)
gul_ss <- gul_s %>% select(gul_politics)
tga <- cbind(tga, gul_ss)
### gulliable trust
# religiosity moderator
gul_rel <- tga %>%
drop_na(religiosity_f) %>%
ggplot(aes(gul_politics, b03)) +
geom_jitter(alpha = 0.1) +
geom_point(aes(color = religiosity_f), alpha = 0.1) +
geom_smooth(aes(color = religiosity_f), method = "lm", formula = "y ~ x") +
#geom_smooth(method = "lm", formula = "y ~ x", color = "black") +
labs(
x = "Gullible Trust in Politics",
y = "Democratic Satisfaction",
color = "Religiosity"
) +
theme_minimal() +
scale_y_continuous(limits=c(0,10)) +
#scale_color_brewer(palette = "Set1") +
theme(legend.position = "bottom")
#ideology moderator
gul_ide <- tga %>%
drop_na(ideology_f) %>%
ggplot(aes(gul_politics, b03)) +
geom_jitter(alpha = 0.1) +
geom_point(aes(color = ideology_f), alpha = 0.1) +
geom_smooth(aes(color = ideology_f), method = "lm", formula = "y ~ x") +
#geom_smooth(method = "lm", formula = "y ~ x", color = "black") +
labs(
x = "Gullible Trust in Politics",
y = "Democratic Satisfaction",
color = "Ideology"
) +
theme_minimal() +
scale_y_continuous(limits=c(0,10)) +
scale_color_brewer(palette = "Set2") +
theme(legend.position = "bottom")
cowplot::plot_grid(gul_rel, gul_ide)
Variable explanations
The DV
b03 Democratic Satisfaction, ordinal 0-10, high levels
represents high satisfaction
The IVs
c13 refers to ideology, ordinal 0-10, 0 left 10
right
d02_conventional_fa refers to trust in conventional
media sources (tv, newspapers, radio, journals)
z12 refers to income
religiosity_num refers to religiosity, 0 low 1
high
gender, 0 Male, 1 Female
tab_model(gt_b, gt_rel, gt_ide,
show.se = T,
collapse.se = T,
show.ci = F,
p.style = "stars")
| Â | b 03 | b 03 | b 03 |
|---|---|---|---|
| Predictors | Estimates | Estimates | Estimates |
| (Intercept) |
0.02 (0.44) |
0.17 (0.44) |
0.05 (0.43) |
| gul politics |
3.11 *** (0.29) |
2.31 *** (0.44) |
2.05 *** (0.53) |
| religiosity num |
0.67 *** (0.20) |
0.71 *** (0.20) |
0.58 ** (0.20) |
| c13 |
0.40 *** (0.03) |
0.39 *** (0.03) |
0.41 *** (0.03) |
| d02 conventional fa |
0.10 (0.43) |
-0.03 (0.43) |
0.04 (0.42) |
| age |
0.02 ** (0.01) |
0.02 ** (0.01) |
0.02 ** (0.01) |
| gender |
-0.04 (0.18) |
-0.03 (0.18) |
-0.03 (0.18) |
| z12 |
0.09 * (0.04) |
0.08 * (0.04) |
0.08 * (0.04) |
|
gul politics × religiosity num |
1.31 * (0.54) |
||
| gul politics × c13 |
0.18 * (0.08) |
||
| Observations | 654 | 654 | 654 |
| R2 / R2 adjusted | 0.528 / 0.523 | 0.532 / 0.526 | 0.532 / 0.526 |
|
|||
ggpredict(gt_rel, terms = c("gul_politics", "religiosity_num")) %>%
plot(colors = "bw") +
labs(title = "Predicted Values for Satisfaction of Democracy",
y="Democratic Satisfaction", x= "Gullible Trust", linetype = "Religiosity") +
scale_linetype_manual(values = 1:2, labels=c("Low", "High"))
ggpredict(gt_ide, terms = c("gul_politics", "c13")) %>%
plot(colors = "bw") +
labs(title = "Predicted Values for Satisfaction of Democracy",
y="Democratic Satisfaction", x= "Gullible Trust", linetype = "c13") +
scale_linetype_manual(values = 1:3, labels=c("Left", "Center", "Right"))