library(readxl)
library(drc)
## Loading required package: MASS
##
## 'drc' has been loaded.
## Please cite R and 'drc' if used for a publication,
## for references type 'citation()' and 'citation('drc')'.
##
## Attaching package: 'drc'
## The following objects are masked from 'package:stats':
##
## gaussian, getInitial
library(magrittr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
library(broom)
library(ggplot2)
datosA <- read_excel("C:/Users/Heymdall/Documents/Paula/Echinochloa/Ensayo 6.1/7ddt 6.1.xlsx", sheet = "DRC", range = "A1:D82")
datos7 <- read_excel("C:/Users/Heymdall/Documents/Paula/Echinochloa/Ensayo 6.1/7ddt 6.1.xlsx",
sheet = "DRC", range = "A1:D70")
Datos <-datosA %>%
mutate_at(vars(ID, Dosis), as.factor) %>%
as.data.frame()
head(Datos)
DatosDRC <-Datos %>%
as.data.frame()
## Altura MA
p1 <- Datos %>%
filter(ID == "MA") %>%
ggplot(aes(x = Dosis, y = `Altura (cm)`)) +
geom_boxplot() +
scale_fill_manual(values = "black") + ylim(0, 50) +
labs(title = "Altura MA",
x = "Dosis (gr i.a)",
y = "Altura (cm)")
## Altura UM
p2 <- Datos %>%
filter(ID == "UM") %>%
ggplot(aes(x = Dosis, y = `Altura (cm)`)) +
geom_boxplot() +
scale_fill_manual(values = "black") + ylim(0, 50) +
labs(title = "Altura UM",
x = "Dosis (gr i.a)",
y = "Altura (cm)")
## Altura LP
p3 <- Datos %>%
filter(ID == "LP") %>%
ggplot(aes(x = Dosis, y = `Altura (cm)`)) +
geom_boxplot() +
scale_fill_manual(values = "black") + ylim(0, 50) +
labs(title = "Altura LP",
x = "Dosis (gr i.a)",
y = "Altura (cm)")
## Altura VE
p4 <- Datos %>%
filter(ID == "VE") %>%
ggplot(aes(x = Dosis, y = `Altura (cm)`)) +
geom_boxplot() +
scale_fill_manual(values = "black") + ylim(0, 50) +
labs(title = "Altura VE",
x = "Dosis (gr i.a)",
y = "Altura (cm)")
## Altura AR
p5 <- Datos %>%
filter(ID == "AR") %>%
ggplot(aes(x = Dosis, y = `Altura (cm)`)) +
geom_boxplot() +
scale_fill_manual(values = "black") + ylim(0, 50) +
labs(title = "Altura AR",
x = "Dosis (gr i.a)",
y = "Altura (cm)")
grid.arrange(p1, p2,p3, p4, p5, ncol = 2)
fct = LL.4(names=c(“Hill slope”,“Min”,“Max”,“EC50”)))
modelAlt <- drm(data=datos7,
formula = `Altura (cm)`~Dosis,
curveid = ID,
fct = LL.4())
tidy(modelAlt)
## Warning in sqrt(diag(varMat)): Se han producido NaNs
plot(modelAlt, legendPos = c(3000,25))
ED (modelAlt, respLev = 50, interval = "delta")
## Warning in sqrt(dEDval %*% varCov %*% dEDval): Se han producido NaNs
## Warning in sqrt(dEDval %*% varCov %*% dEDval): Se han producido NaNs
##
## Estimated effective doses
##
## Estimate Std. Error Lower Upper
## e:AR:50 1444.891 9767.620 -18114.432 21004.213
## e:LP:50 1094.210 1483.518 -1876.484 4064.904
## e:UM:50 70.563 NaN NaN NaN
compParm(modelAlt,"e","-")
## Warning in sqrt(transVec %*% varMat[ind, ind] %*% transVec): Se han producido
## NaNs
## Warning in sqrt(transVec %*% varMat[ind, ind] %*% transVec): Se han producido
## NaNs
##
## Comparison of parameter 'e'
##
## Estimate Std. Error t-value p-value
## UM-LP -1023.65 NaN NaN NaN
## UM-AR -1374.33 NaN NaN NaN
## LP-AR -350.68 9879.64 -0.0355 0.9718
modelFit(modelAlt)
p1 <- Datos %>%
filter(ID == "MA") %>%
ggplot(aes(x = Dosis, y = `% Daño`)) +
geom_boxplot() +
scale_fill_manual(values = "black") + ylim(0, 100) +
labs(title = "% Daño MA",
x = "Dosis (gr i.a)",
y = "% Daño")
## Altura UM
p2 <- Datos %>%
filter(ID == "UM") %>%
ggplot(aes(x = Dosis, y = `% Daño`)) +
geom_boxplot() +
scale_fill_manual(values = "black") + ylim(0, 100) +
labs(title = "% Daño UM",
x = "Dosis (gr i.a)",
y = "% Daño")
## Altura LP
p3 <- Datos %>%
filter(ID == "LP") %>%
ggplot(aes(x = Dosis, y = `% Daño`)) +
geom_boxplot() +
scale_fill_manual(values = "black") + ylim(0, 100) +
labs(title = "% Daño LP",
x = "Dosis (gr i.a)",
y = "% Daño")
## Altura VE
p4 <- Datos %>%
filter(ID == "VE") %>%
ggplot(aes(x = Dosis, y = `% Daño`)) +
geom_boxplot() +
scale_fill_manual(values = "black") + ylim(0, 100) +
labs(title = "% Daño VE",
x = "Dosis (gr i.a)",
y = "% Daño")
## Altura AR
p5 <- Datos %>%
filter(ID == "AR") %>%
ggplot(aes(x = Dosis, y = `% Daño`)) +
geom_boxplot() +
scale_fill_manual(values = "black") + ylim(0, 100) +
labs(title = "% Daño AR",
x = "Dosis (gr i.a)",
y = "% Daño")
grid.arrange(p1, p2,p3, p4, p5, ncol = 2)
names=c(“Hill slope”,“Min”,“Max”,“EC50”)
modelDano <- drm(data=datos7[-(47:70),],
formula = `% Daño`~Dosis,
curveid = ID,
fct = LL.4())
## Control measurements detected for level: AR
tidy(modelDano)
plot(modelDano, legendPos = c(100,50))
ED (modelDano, respLev = 50, interval = "delta")
##
## Estimated effective doses
##
## Estimate Std. Error Lower Upper
## e:LP:50 2135.11 1771.42 -1450.94 5721.16
## e:UM:50 829.63 596.65 -378.22 2037.48
compParm(modelDano,"e","-")
##
## Comparison of parameter 'e'
##
## Estimate Std. Error t-value p-value
## UM-LP -1305.5 1869.2 -0.6984 0.4892
modelFit(modelDano)