# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
# Choose stocks
symbols <- c("MSFT", "HD", "TSLA", "AMC", "WAL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMC" "HD" "MSFT" "TSLA" "WAL"
# weight
weights <- c(0.25,
0.25,
0.20,
0.20,
0.10)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AMC 0.25
## 2 HD 0.25
## 3 MSFT 0.2
## 4 TSLA 0.2
## 5 WAL 0.1
portfolio_returns_rebalanced_monthly_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weigh = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0611
## 2 2013-02-28 0.00301
## 3 2013-03-28 0.0326
## 4 2013-04-30 0.119
## 5 2013-05-31 0.148
## 6 2013-06-28 0.0215
## 7 2013-07-31 0.0448
## 8 2013-08-30 0.0342
## 9 2013-09-30 0.0466
## 10 2013-10-31 -0.00783
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_rebalanced_monthly_tbl %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 0.264
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# add portfolio skewness
add_row(tibble(asset = "portfolio",
skew = skewness(portfolio_returns_rebalanced_monthly_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 AMC -1.55
## 2 HD 0.188
## 3 MSFT 0.0825
## 4 TSLA 0.944
## 5 WAL -0.0127
## 6 portfolio 0.264
# plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "portfolio"))
labs(y = "skewness")
## $y
## [1] "skewness"
##
## attr(,"class")
## [1] "labels"
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
my Tesla stock is most likely to have an extreme positive return out of my whole portfolio.