# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
from 2012-12-31 to 2017-12-31
# Choose stocks
symbols <- c("AAPL", "DIS", "NKE", "GE", "SBUX")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "DIS" "GE" "NKE" "SBUX"
# weight
weights <- c(0.25,
0.25,
0.20,
0.20,
0.10)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 DIS 0.25
## 3 GE 0.2
## 4 NKE 0.2
## 5 SBUX 0.1
portfolio_returns_rebalanced_monthly_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weigh = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_rebalanced_monthly_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.00658
## 2 2013-02-28 0.00714
## 3 2013-03-28 0.0296
## 4 2013-04-30 0.0396
## 5 2013-05-31 0.0141
## 6 2013-06-28 -0.0206
## 7 2013-07-31 0.0549
## 8 2013-08-30 -0.00593
## 9 2013-09-30 0.0549
## 10 2013-10-31 0.0700
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_rebalanced_monthly_tbl %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 -0.281
# calculate sd of porfolio returns
sd_portfolio <- sd(portfolio_returns_rebalanced_monthly_tbl$returns)
mean_portfolio <- mean(portfolio_returns_rebalanced_monthly_tbl$returns)
portfolio_returns_rebalanced_monthly_tbl %>%
#add a new variable
mutate(extreme_neg = ifelse(returns < mean_portfolio - 2 * sd_portfolio,
"ext_neg",
"not_ext_neg")) %>%
ggplot(aes(x= returns, fill = extreme_neg)) +
geom_histogram(binwidth = 0.003) +
scale_x_continuous(breaks = seq(-0.06,0.06,0.02)) +
labs(x = "monthly returns")
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# add portfolio skewness
add_row(tibble(asset = "portfolio",
skew = skewness(portfolio_returns_rebalanced_monthly_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 AAPL -0.555
## 2 DIS -0.502
## 3 GE -0.333
## 4 NKE 0.0783
## 5 SBUX -0.320
## 6 portfolio -0.281
# plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "portfolio"))
labs(y = "skewness")
## $y
## [1] "skewness"
##
## attr(,"class")
## [1] "labels"
rolling_skew_tbl <- portfolio_returns_rebalanced_monthly_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = 24,
FUN = skewness,
col_rename = "skew") %>%
select(-returns) %>%
na.omit()
#plot
rolling_skew_tbl %>%
ggplot(aes(x = date, y = skew))+
geom_line(color = "cornflowerblue") +
geom_hline(yintercept = 0, linetype = "dotted", size = 2) +
# formatting
scale_y_continuous(limits = c(-1,1), breaks = seq(-1,1,0.2)) +
theme(plot.title = element_text(hjust = 0.5)) +
# labeling
labs(y = "skewness",
x = NULL,
title = "rolling 24-month skewness") +
annotate(geom = "text",
x = as.Date("2016-07-01"), y = 0.8,
color = "red", size = 4,
label = str_glue("the 24 month rolling skewness is positive for about half of the lifetime, even though the overall skewness is negative" ))