A company buys 100 lightbulbs, each of which has an exponential
lifetime of 1000 hours. What is the expected time for the first of these
bulbs to burn out? (See Exercise 10.)
Solution 1
Expected time for the first of these bulbs to burn out:
The expected value of an exponential distribution is given by \(E(X) = 1/\lambda\)
n = 100
lifetime = 1000 # This means that 1 bulb will bulb in 1000 hours
problem1_soln = lifetime / n
problem1_soln
## [1] 10
Solution 2
\(f_Z(z) = (1/2)e^{-\lambda|z|}\) can
be re-written as a piecewise function as: \(f_Z(z) = \begin{cases} (1/2)e^{-\lambda z}, &
\mbox{if } z \ge 0, \\ (1/2)e^{\lambda z}, & \mbox{if }z <0.
\end{cases}\)
\[ \begin{split} f_Z(z) &= f_{X_1+(-X_2)}(z) \\ &= \int_{-\infty}^{\infty} f_{-X_2}(z-x_1) f_{X_1}(x_1) dx_1 \\ &= \int_{-\infty}^{\infty} f_{X_2}(x_1-z) f_{X_1}(x_1) dx_1 \\ &= \int_{-\infty}^{\infty} \lambda e^{-\lambda(x_1-z)} \lambda e^{-\lambda x_1} dx_1 \\ &= \int_{-\infty}^{\infty} \lambda^2 e^{-\lambda x_1 + \lambda z} e^{-\lambda x_1} dx_1 \\ &= \int_{-\infty}^{\infty} \lambda^2 e^{\lambda z - \lambda x_1 - \lambda x_1} dx_1 \\ &= \int_{-\infty}^{\infty} \lambda^2 e^{\lambda(z-2x_1)} dx_1 \end{split} \]
recall that \(z=x_1-x_2\), therefore, \(x_2=x_1-z\).
If \(z \ge 0\), then \(x_2=(x_1-z) \ge 0\), and \(x_1 \ge z\), and, using WolframAlpha, \(f_Z(z) = \int_{z}^{\infty} \lambda^2 e^{\lambda(z-2x_1)} dx_1 = \frac{1}{2} \lambda e^{-\lambda z}\).
If \(z < 0\), then \(x_2=(x_1-z) \ge 0\), and \(x_1 \ge 0\), and \(f_Z(z) = \int_{0}^{\infty} \lambda^2 e^{\lambda(z-2x_1)} dx_1 =\frac{1}{2} \lambda e^{\lambda z}\).
Combining two sides we get \(f_Z(z) = \begin{cases} (1/2)e^{-\lambda z}, & \mbox{if } z \ge 0, \\ (1/2)e^{\lambda z}, & \mbox{if }z <0. \end{cases}\)
Let \(X\) be a continuous random variable with mean \(\mu = 10\) and variance \(\sigma^2 = 100/3\). Using Chebyshev’s Inequality, find an upper bound for the following probabilities.
In this case, we have, \(\mu=10\)
and \(\sigma = \sqrt{\frac{100}{3}} =
\frac{10}{\sqrt{3}}\).
If \(\epsilon = k\sigma\), then \(k=\frac{\epsilon}{\sigma} =
\frac{\epsilon\sqrt{3}}{10}\).
Let \(u\) be upper bound in
Chebyshev’s Inequality, then \(u =
\frac{1}{k^2} = \frac{1}{(\epsilon\sqrt{3}/10)^2} =
\frac{100}{3\epsilon^2}\).
std = sqrt(100/3)
Solution 3a: P(|X−10| ≥ 2)
k = 2/std
p_upper_3a = round((1 / (k^2)), 4)
p_upper_3a
## [1] 8.3333
Since probability cannot be greater than 1, therefore, the upper
bound is 1 for this case
Solution 3b: P(|X−10| ≥ 5)
k = 5/std
p_upper_3b = round((1 / (k^2)), 4)
p_upper_3b
## [1] 1.3333
Also, since probability cannot be greater than 1, the upper bound
is 1 for this case as well
Solution 3c: P(|X−10| ≥ 9)
k = 9/std
p_upper_3c = round((1 / (k^2)), 4)
p_upper_3c
## [1] 0.4115
The probability is less than 1 here, hence the upper bound is
0.4115
Solution 3c: P(|X−10| ≥ 20)
k = 20/std
p_upper_3d = round((1 / (k^2)), 4)
p_upper_3d
## [1] 0.0833
Also, the probability is less than 1 here, hence the upper bound is 0.0833