library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom 1.0.5 ✔ recipes 1.0.8
## ✔ dials 1.2.0 ✔ rsample 1.2.0
## ✔ dplyr 1.1.3 ✔ tibble 3.2.1
## ✔ ggplot2 3.4.3 ✔ tidyr 1.3.0
## ✔ infer 1.0.5 ✔ tune 1.1.2
## ✔ modeldata 1.2.0 ✔ workflows 1.1.3
## ✔ parsnip 1.1.1 ✔ workflowsets 1.0.1
## ✔ purrr 1.0.2 ✔ yardstick 1.2.0
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ purrr::discard() masks scales::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ✖ recipes::step() masks stats::step()
## • Learn how to get started at https://www.tidymodels.org/start/
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.4
## ✔ lubridate 1.9.2 ✔ stringr 1.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ readr::col_factor() masks scales::col_factor()
## ✖ purrr::discard() masks scales::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ stringr::fixed() masks recipes::fixed()
## ✖ dplyr::lag() masks stats::lag()
## ✖ readr::spec() masks yardstick::spec()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
library(readr)
boston <- readr::read_csv("~/Desktop/BANA 4080 R/data_bana4080/boston.csv")
## Rows: 506 Columns: 16
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (16): lon, lat, cmedv, crim, zn, indus, chas, nox, rm, age, dis, rad, ta...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
QUESTION 2
set.seed(123)
split <- initial_split(boston, prop = 0.7, strata = cmedv)
train <- training(split)
test <- testing(split)
QUESTION 3
correlation_train <- cor(train)
cmedv_cor <- correlation_train[ , c("cmedv")]
QUESTION 4
Plot_1 <- ggplot(train, aes(rm, cmedv)) +
geom_point(alpha = 0.2) +
geom_smooth(method = "lm", se = FALSE) +
scale_y_continuous(labels = scales::comma) +
scale_x_continuous(labels= scales::comma)
QUESTION 5
model1 <- linear_reg() %>%
fit(cmedv ~ rm, data = train)
tidy(model1)
## # A tibble: 2 × 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -35.4 3.11 -11.4 8.70e-26
## 2 rm 9.22 0.491 18.8 7.46e-55
The dependent variable’s change (cmedv) for a one-unit change in the strongest_positive_var, the predictor variable, is represented by the coefficient estimate.
A positive coefficient denotes a favorable linear relationship, whereas a negative coefficient denotes an unfavorable linear relationship.
The p-value is often used to determine the statistical significance of a coefficient. The coefficient is statistically different from zero when the p-value is minimal (usually less than 0.05).
QUESTION 6
residuals <- model1 %>%
predict(train) %>%
bind_cols(train) %>%
select(rm, cmedv, .pred) %>%
mutate(residual = cmedv - .pred)
residuals %>%
mutate(squared_residuals = residual^2) %>%
summarize(sum_of_squared_residuals = sum(squared_residuals))
## # A tibble: 1 × 1
## sum_of_squared_residuals
## <dbl>
## 1 14751.
model1 %>%
predict(test) %>%
bind_cols(test) %>%
rmse(truth = cmedv, estimate = .pred)
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 6.83
QUESTION 7
model3 <- linear_reg() %>%
fit(cmedv ~ ., data = train)
tidy(model3) %>%
arrange(desc(p.value))
## # A tibble: 16 × 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 indus -0.0143 0.0738 -0.193 8.47e- 1
## 2 age -0.00921 0.0156 -0.591 5.55e- 1
## 3 lat 5.54 4.24 1.31 1.93e- 1
## 4 lon -5.65 3.86 -1.46 1.45e- 1
## 5 (Intercept) -608. 342. -1.78 7.64e- 2
## 6 zn 0.0332 0.0165 2.01 4.56e- 2
## 7 crim -0.0830 0.0396 -2.10 3.65e- 2
## 8 chas 2.28 1.05 2.17 3.06e- 2
## 9 nox -11.7 4.74 -2.46 1.44e- 2
## 10 tax -0.0121 0.00436 -2.78 5.78e- 3
## 11 rad 0.272 0.0790 3.44 6.47e- 4
## 12 b 0.0123 0.00310 3.97 8.72e- 5
## 13 dis -1.26 0.244 -5.17 4.06e- 7
## 14 ptratio -0.874 0.163 -5.37 1.48e- 7
## 15 lstat -0.479 0.0637 -7.51 5.24e-13
## 16 rm 4.37 0.516 8.46 8.13e-16
QUESTION 8
Compute_the_generalization <- model3 %>%
predict(test) %>%
bind_cols(test) %>%
rmse(truth = cmedv, estimate = .pred)
QUESTION 9
model3 %>%
vip::vip(num_features = 20)