library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom        1.0.5     ✔ recipes      1.0.8
## ✔ dials        1.2.0     ✔ rsample      1.2.0
## ✔ dplyr        1.1.3     ✔ tibble       3.2.1
## ✔ ggplot2      3.4.3     ✔ tidyr        1.3.0
## ✔ infer        1.0.5     ✔ tune         1.1.2
## ✔ modeldata    1.2.0     ✔ workflows    1.1.3
## ✔ parsnip      1.1.1     ✔ workflowsets 1.0.1
## ✔ purrr        1.0.2     ✔ yardstick    1.2.0
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ purrr::discard() masks scales::discard()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
## ✖ recipes::step()  masks stats::step()
## • Learn how to get started at https://www.tidymodels.org/start/
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ readr     2.1.4
## ✔ lubridate 1.9.2     ✔ stringr   1.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ readr::col_factor() masks scales::col_factor()
## ✖ purrr::discard()    masks scales::discard()
## ✖ dplyr::filter()     masks stats::filter()
## ✖ stringr::fixed()    masks recipes::fixed()
## ✖ dplyr::lag()        masks stats::lag()
## ✖ readr::spec()       masks yardstick::spec()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
library(readr)
boston <- readr::read_csv("~/Desktop/BANA 4080 R/data_bana4080/boston.csv")
## Rows: 506 Columns: 16
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (16): lon, lat, cmedv, crim, zn, indus, chas, nox, rm, age, dis, rad, ta...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

PART 1

QUESTION 2

set.seed(123)
split <- initial_split(boston, prop = 0.7, strata = cmedv)
train <- training(split)
test <- testing(split)

QUESTION 3

correlation_train <- cor(train)

cmedv_cor <- correlation_train[ , c("cmedv")]   

QUESTION 4

Plot_1 <- ggplot(train, aes(rm, cmedv)) +
  geom_point(alpha = 0.2) +
  geom_smooth(method = "lm", se = FALSE) +
  scale_y_continuous(labels = scales::comma) +
  scale_x_continuous(labels= scales::comma)

QUESTION 5

model1 <- linear_reg() %>%
  fit(cmedv ~ rm, data = train)
tidy(model1)
## # A tibble: 2 × 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)   -35.4      3.11      -11.4 8.70e-26
## 2 rm              9.22     0.491      18.8 7.46e-55

QUESTION 6

residuals <- model1 %>%
  predict(train) %>%
  bind_cols(train) %>%
  select(rm, cmedv, .pred) %>%
  mutate(residual = cmedv - .pred)

residuals %>%
  mutate(squared_residuals = residual^2) %>%
  summarize(sum_of_squared_residuals = sum(squared_residuals))
## # A tibble: 1 × 1
##   sum_of_squared_residuals
##                      <dbl>
## 1                   14751.
model1 %>%
  predict(test) %>%
  bind_cols(test) %>%
  rmse(truth = cmedv, estimate = .pred)
## # A tibble: 1 × 3
##   .metric .estimator .estimate
##   <chr>   <chr>          <dbl>
## 1 rmse    standard        6.83

PART 2

QUESTION 7

model3 <- linear_reg() %>%
  fit(cmedv ~ ., data = train) 

tidy(model3) %>%
  arrange(desc(p.value))
## # A tibble: 16 × 5
##    term          estimate std.error statistic  p.value
##    <chr>            <dbl>     <dbl>     <dbl>    <dbl>
##  1 indus         -0.0143    0.0738     -0.193 8.47e- 1
##  2 age           -0.00921   0.0156     -0.591 5.55e- 1
##  3 lat            5.54      4.24        1.31  1.93e- 1
##  4 lon           -5.65      3.86       -1.46  1.45e- 1
##  5 (Intercept) -608.      342.         -1.78  7.64e- 2
##  6 zn             0.0332    0.0165      2.01  4.56e- 2
##  7 crim          -0.0830    0.0396     -2.10  3.65e- 2
##  8 chas           2.28      1.05        2.17  3.06e- 2
##  9 nox          -11.7       4.74       -2.46  1.44e- 2
## 10 tax           -0.0121    0.00436    -2.78  5.78e- 3
## 11 rad            0.272     0.0790      3.44  6.47e- 4
## 12 b              0.0123    0.00310     3.97  8.72e- 5
## 13 dis           -1.26      0.244      -5.17  4.06e- 7
## 14 ptratio       -0.874     0.163      -5.37  1.48e- 7
## 15 lstat         -0.479     0.0637     -7.51  5.24e-13
## 16 rm             4.37      0.516       8.46  8.13e-16

QUESTION 8

Compute_the_generalization <- model3 %>%
  predict(test) %>%
  bind_cols(test) %>%
  rmse(truth = cmedv, estimate = .pred)

QUESTION 9

model3 %>%
  vip::vip(num_features = 20)