n <- 100
μ <- 1000
result <- μ / n
cat(result, "hours to burn out\n")
## 10 hours to burn out
14.Assume that \(X_1\) and \(X_2\) are independent random variables, each having an exponential density with parameter \(\lambda\). We want to show that \(Z = X_1 - X_2\) has the density:
\[ f_Z(z) = \frac{1}{2} e^{-\lambda |z|} \]
Rewrite this as: \[ f_Z(z) = \begin{cases} \frac{1}{2} e^{-\lambda z}, & \text{if } z \geq 0 \\ \frac{1}{2} e^{\lambda z}, & \text{if } z < 0 \end{cases}\]
PDF is below, given: \(X_1\) and \(X_2\) have exponential density \[ f_{X_1}(x) = f_{X_2}(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{otherwise} \end{cases}\] Next, find the PDF of \(Z\) by taking the derivative: \[ f_Z(z) = f_{X_1 - X_2}(z) = \int_{-\infty}^{\infty} f_{-X_2}(z - x_1) f_{X_1}(x_1) \, dx_1\] Distribute: \[ = \int_{-\infty}^{\infty} \lambda e^{-\lambda (z - x_1)} \cdot \lambda e^{-\lambda x_1} \, dx_1\] Simplify: \[ = \lambda^2 \int_{-\infty}^{\infty} e^{-\lambda z + \lambda x_1 - \lambda x_1} \, dx_1 \]
\[ = \lambda^2 \int_{-\infty}^{\infty} e^{\lambda z} \, dx_1 \]
We can rewrite the given: \(Z = X_1 - X_2\) and assume \(x_2 = x_1 - z\).
If Z, the difference is non negative, \(z \geq 0\), then \(x_2 = (x_1 - z) \geq 0\), and \(x_1 \geq z\):
\[ f_Z(z) = \frac{1}{2} e^{-\lambda z} \]
If the difference, Z, is negative, \(z < 0\), then \(x_2 = (x_1 - z) \geq 0\), and \(x_1 \geq 0\):
\[ f_Z(z) = \frac{1}{2} e^{\lambda z} \]
Combining both cases; the PDF of Z depends on the sign of z:
\[ f_Z(z) = \begin{cases} \frac{1}{2} e^{-\lambda z}, & \text{if } z \geq 0 \\ \frac{1}{2} e^{\lambda z}, & \text{if } z < 0 \end{cases} \]
A. P(|X − 10| ≥ 2).
a <- 2
k_1 <- a/sqrt(100/3)
p_a <- 1/ (k_1)^2
p_a
## [1] 8.333333
b <- 5
k_1 <- b/sqrt(100/3)
p_b <- 1/ (k_1)^2
p_b
## [1] 1.333333
C. P(|X − 10| ≥ 9).
c <- 9
k_1 <- c/sqrt(100/3)
p_c <- 1/ (k_1)^2
p_c
## [1] 0.4115226
D. P(|X − 10| ≥ 20).
d <- 20
k_1 <- d/sqrt(100/3)
p_d <- 1/ (k_1)^2
p_d
## [1] 0.08333333