1 PENDAHULUAN
1.1 Latar Belakang
Demam Berdarah Dengue (DBD) adalah penyakit menular yang disebabkan oleh virus dengue, yang dibawa oleh nyamuk Aedes aegypti dan Aedes albopictus. DBD dapat menyebabkan berbagai gejala yang serius, termasuk demam tinggi, pendarahan, dan dalam beberapa kasus dapat berakibat fatal. Penyakit ini merupakan masalah kesehatan masyarakat yang signifikan di banyak wilayah di seluruh dunia, termasuk Daerah Cilacap.
Mengidentifikasi dan memahami faktor-faktor yang menyabakna terjadinya DBD dapat membantu dalam perencanaan dan pelaksanaan program-program pencegahan DBD di Daerah Cilacap. Pada penelitian ini, akan diamati variabel faktor - faktor yang Menyebabkan Terjadinya Penyakit DBD di Daerah Cilacap dipengaruhi oleh beberapa faktor dengan variabel independen yaitu variabel tempat Sampah (\(X_1\)), variabel Pembuangan limbah (\(X_2\)),variabel Kepadatan Penduduk (\(X_3\)), variabel Pola Hidup Bersih dan Sehat (\(X_4\)), variabel Kondisi Rumah Sehat (\(X_5\)), variabel Sanitasi Total Berbasis Masyarakat (\(X_6\)), variabel Kesehatan Lingkungan (\(X_7\)),variabel Tinggi Ventilasi (\(X_8\)) terhadap penyakit DBD sebagai variabel respon (\(Y\)).
1.2 Rumusan Masalah
Apa saja indikator utama atau indikator yang berperan besar dalam menjelaskan faktor - faktor yang menyebabkan terjadinya penyakit DBD di daerah cilacap?
1.3 Tujuan Penelitian
Untuk mengetahui indikator utama atau indikator yang berperan besar dalam menjelaskan faktor - faktor yang menyebabkan terjadinya penyakit DBD di daerah cilacap.
2 TINJAUAN PUSTAKA
2.1 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) merupakan analisis multivariat yang mentrasformasi variabel - variabel asal yang saling berkorelasi menjadi variabel - variabel baru yang tidak saling berkorelasi dengan mereduksi sejumlah variabel tersebut sehingga mempunyai dimensi yang lebih kecil namun dapat menerangkan sebagian besar keragaman variabel aslinya. Pereduksian (penyederhanaan) dimensi dilakukan dengan kriteria presentase keragaman data yang diterangkan oleh beberapa komponen utama pertama. Apabila beberapa komponen utama pertama telah menerangkan lebih dari 75% keragaman data asli, maka analisis cukup dilakukan sampai komponen utama tersebut.
Analisis komponen utama juga sering digunakan untu menghindari masalah multikolinearitas antar variabel bebas dalam model regresi linier berganda. Analisis Komponen Utama merupakan suatu awalan sari analisis berikutnya. Analisis komponen utama lebih baik digunakan jika variabel-variabel asal saling berkorelasi.
\(Y_{1}\) = \(e'_{1}X\) = \(e'_{11}X_{1}\) + \(e'_{21}X_{2}\) + …. + \(e'_{p1}X_{p}\)
\(Y_{2}\) = \(e'_{2}X\) = \(e'_{12}X_{1}\) + \(e'_{22}X_{2}\) + …. + \(e'_{p2}X_{p}\)
\(Y_{p}\) = \(e'_{p}X\) = \(e'_{1p}X_{1}\) + \(e'_{2p}X_{2}\) + …. + \(e'_{pp}X_{p}\)
Dalam Analisis PCA, matriks data mentah n x p (n data dan p variabel) diubah menjadi matriks korelasi atau matriks kovarian. Perbandingan penggunaan antara matriks korelasi dan matriks kovariansi.
3 Data Penelitian
Data yang digunakan adalah data Daerah Cilacap tentang Faktor - Faktor yang Menyebabkan Terjadinya Penyakit DBD terdiri dari beberapa variabel, sebagai berikut. Dengan keterangan masing masing variabel predictor dan variabel respon sebagai berikut :
\(Y\) : Penyakit DBD di Daerah Cilacap.
\(X_1\) : Tempat Sampah.
\(X_2\) : Pembuangan limbah.
\(X_3\) : Kepadatan Penduduk.
\(X_4\) : Pola Hidup Bersih dan Sehat.
\(X_5\) : Kondisi Rumah Sehat.
\(X_6\) : Sanitasi Total Berbasis Masyarakat
\(X_7\) : Kesehatan Lingkungan
\(X_8\) : Tinggi Ventilasi
4 SOURCE CODE
4.1 Library
> library(rmarkdown)
> library(knitr)
> library(tinytex)
> library(prettydoc)
> library(readxl)
> library(ggplot2)
> library(corrplot)4.2 Struktur Data
> library(readxl)
> data_anmul_1 <- read_excel("data anmul 1.xlsx")
> View(data_anmul_1)
> head(data_anmul_1)
# A tibble: 6 × 8
Tsampah Limbah Penduduk PHBS Rumah STBM Kesling Tinggi
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 992 388 267 8814 5361 14 1 198
2 673 785 511 6550 6286 14 2 25
3 1333 3472 919 3433 12317 17 2 23
4 697 463 582 6372 5263 15 1 40
5 1408 1583 638 3386 9484 14 2 50
6 931 820 512 11484 7366 11 0 50
> str(data_anmul_1)
tibble [24 × 8] (S3: tbl_df/tbl/data.frame)
$ Tsampah : num [1:24] 992 673 1333 697 1408 ...
$ Limbah : num [1:24] 388 785 3472 463 1583 ...
$ Penduduk: num [1:24] 267 511 919 582 638 ...
$ PHBS : num [1:24] 8814 6550 3433 6372 3386 ...
$ Rumah : num [1:24] 5361 6286 12317 5263 9484 ...
$ STBM : num [1:24] 14 14 17 15 14 11 10 11 7 14 ...
$ Kesling : num [1:24] 1 2 2 1 2 0 1 1 1 2 ...
$ Tinggi : num [1:24] 198 25 23 40 50 50 26 45 5 15 ...4.3 Statistika Deskriptif
> summary(data_anmul_1)
Tsampah Limbah Penduduk PHBS
Min. : 103.0 Min. : 39.0 Min. : 117 Min. : 973
1st Qu.: 976.8 1st Qu.: 798.5 1st Qu.: 632 1st Qu.: 5047
Median :1909.0 Median :1225.5 Median : 981 Median : 7768
Mean :2202.8 Mean :2035.1 Mean :1462 Mean : 8299
3rd Qu.:3048.5 3rd Qu.:3612.5 3rd Qu.:1318 3rd Qu.:12066
Max. :7756.0 Max. :5878.0 Max. :8581 Max. :16538
Rumah STBM Kesling Tinggi
Min. : 465 Min. : 4.00 Min. :0.000 Min. : 1.00
1st Qu.: 4521 1st Qu.: 9.50 1st Qu.:1.000 1st Qu.: 8.00
Median : 5872 Median :12.50 Median :2.000 Median : 9.50
Mean : 8126 Mean :11.75 Mean :1.542 Mean : 26.17
3rd Qu.:11670 3rd Qu.:15.25 3rd Qu.:2.000 3rd Qu.: 29.50
Max. :21278 Max. :17.00 Max. :3.000 Max. :198.00 4.4 Eksplorasi Korelasi
> library(corrplot)
> kor <- cor(data_anmul_1)
> corrplot(kor, method="number")4.5 Menampilkan Kumulatif Nilai Eigen dan Vektor Eigen
4.5.1 Dengan Matriks Kovarians
4.5.1.1 Dekomposisi Eigen
> sc <- scale(data_anmul_1)
> sc
Tsampah Limbah Penduduk PHBS Rumah STBM
[1,] -0.74200835 -0.93683007 -0.67736927 0.11640128 -0.51746481 0.52496830
[2,] -0.93750083 -0.71102393 -0.53904194 -0.39506402 -0.34432401 0.52496830
[3,] -0.53303363 0.81729122 -0.30774051 -1.09923246 0.78455399 1.22492603
[4,] -0.92279293 -0.89417148 -0.49879096 -0.43527640 -0.53580837 0.75828754
[5,] -0.48707145 -0.25713651 -0.46704370 -1.10985033 0.25427520 0.52496830
[6,] -0.77939093 -0.69111658 -0.53847502 0.71958695 -0.14217043 -0.17498943
[7,] -0.11263288 -0.12062902 -0.23744301 -0.95306724 -0.72747992 -0.40830868
[8,] -0.92401859 -0.69054780 -0.18642064 -1.16745795 -0.47123154 -0.17498943
[9,] -0.24745528 -0.90042807 -0.48064967 -1.65497655 -0.65803642 -1.10826641
[10,] 0.38253302 1.58742099 -0.41261983 1.64017930 2.46186716 0.52496830
[11,] -0.32834872 -0.76335180 -0.41715516 -0.32073890 -0.76323115 -0.87494717
[12,] -1.08703113 -0.56769106 -0.43869794 -0.50643875 -0.03959621 0.05832981
[13,] -1.28681341 -1.13533472 -0.76240656 -1.26234109 -0.81171058 -1.80822414
[14,] 0.07918262 -0.40445085 -0.44946933 0.09810239 -1.43389437 0.29164906
[15,] 0.84276767 -0.51650075 -0.16714552 0.08093306 0.95806914 0.99160679
[16,] 0.49713206 -0.17580080 -0.09231270 -0.63837150 -0.48901356 0.99160679
[17,] -0.24806811 -0.59044231 0.12935117 0.55218598 -1.04287694 -0.40830868
[18,] 0.58170248 0.01587848 -0.04866023 -0.66186637 -0.50941610 -0.40830868
[19,] 0.96288217 1.13694627 0.16903524 0.83435036 -0.37221372 1.22492603
[20,] -0.04889865 -0.70078586 -0.09854877 1.27487922 -0.72467223 1.22492603
[21,] 0.65033933 1.53281800 -0.10705250 0.90167221 0.62320548 1.22492603
[22,] 0.16988133 1.34568897 4.03596432 1.86134738 0.84145648 -1.57490490
[23,] 3.40316759 1.43441885 1.32384165 1.11764430 1.58380934 -1.57490490
[24,] 1.11547661 2.18577884 1.26885087 1.00739913 2.07590357 -1.57490490
Kesling Tinggi
[1,] -0.6130036 4.262641370
[2,] 0.5186953 -0.028941309
[3,] 0.5186953 -0.078554982
[4,] -0.6130036 0.343161235
[5,] 0.5186953 0.591229598
[6,] -1.7447025 0.591229598
[7,] -0.6130036 -0.004134473
[8,] -0.6130036 0.467195417
[9,] -0.6130036 -0.525078035
[10,] 0.5186953 -0.277009672
[11,] 0.5186953 -0.450657526
[12,] -0.6130036 0.740070616
[13,] -1.7447025 -0.624305380
[14,] -0.6130036 -0.425850690
[15,] 1.6503943 -0.450657526
[16,] -0.6130036 -0.450657526
[17,] -1.7447025 -0.450657526
[18,] 0.5186953 -0.450657526
[19,] 1.6503943 -0.401043853
[20,] 0.5186953 -0.450657526
[21,] 0.5186953 -0.401043853
[22,] 1.6503943 -0.500271199
[23,] 0.5186953 -0.525078035
[24,] 0.5186953 -0.500271199
attr(,"scaled:center")
Tsampah Limbah Penduduk PHBS Rumah STBM
2202.791667 2035.083333 1461.833333 8298.750000 8125.541667 11.750000
Kesling Tinggi
1.541667 26.166667
attr(,"scaled:scale")
Tsampah Limbah Penduduk PHBS Rumah STBM
1631.7763322 1758.1452410 1763.9320126 4426.4977544 5342.4727948 4.2859731
Kesling Tinggi
0.8836272 40.3114685
>
> s <- cov(sc)
> s_eig <- eigen(s)
> s_eig
eigen() decomposition
$values
[1] 3.8404418 1.3369275 0.9260854 0.6142841 0.5414211 0.4219991 0.2079264
[8] 0.1109147
$vectors
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.40370599 0.01847086 0.17167700 -0.20016179 0.29918232 0.79798520
[2,] -0.46085266 -0.08429393 -0.02940232 -0.27219907 0.02529968 -0.18264602
[3,] -0.38422583 0.31184942 -0.23369424 0.51083462 -0.26428645 -0.05303322
[4,] -0.37213391 -0.13339743 -0.32885722 0.38714653 0.61407914 -0.19418945
[5,] -0.40008881 -0.14490192 -0.18493874 -0.59534205 -0.17216387 -0.34518862
[6,] 0.09364967 -0.79274731 0.23800655 0.16574225 0.17358656 -0.10878266
[7,] -0.35698759 -0.34458371 0.24081633 0.29841791 -0.60287403 0.16077523
[8,] 0.20552787 -0.33064428 -0.81120927 -0.06365987 -0.19919729 0.36400614
[,7] [,8]
[1,] 0.01211123 -0.20175591
[2,] 0.63909690 0.51294058
[3,] 0.35821679 -0.48844276
[4,] -0.36766209 0.18898101
[5,] -0.32481406 -0.41952130
[6,] 0.30849399 -0.37620384
[7,] -0.34590454 0.31276262
[8,] 0.08712703 0.08092252> qchisq(0.95,1)
[1] 3.8414594.5.1.2 Menggambar Scree Plot Berdasarkan Nilai Eigen
> plot(s_eig$values, xlab="Eigenvalue Number", ylab = "Eigenvalue Size",
+ main = "Scree Plot")
> lines(s_eig$values)4.5.1.3 Nilai Kumulatif Eigen
> for (eg in s_eig$values){
+ print(eg / sum(s_eig$values))
+ }
[1] 0.4800552
[1] 0.1671159
[1] 0.1157607
[1] 0.07678552
[1] 0.06767763
[1] 0.05274988
[1] 0.0259908
[1] 0.013864334.5.1.4 Persamaan PCA
> s_eig$vectors[,1:3]
[,1] [,2] [,3]
[1,] -0.40370599 0.01847086 0.17167700
[2,] -0.46085266 -0.08429393 -0.02940232
[3,] -0.38422583 0.31184942 -0.23369424
[4,] -0.37213391 -0.13339743 -0.32885722
[5,] -0.40008881 -0.14490192 -0.18493874
[6,] 0.09364967 -0.79274731 0.23800655
[7,] -0.35698759 -0.34458371 0.24081633
[8,] 0.20552787 -0.33064428 -0.811209274.5.2 Dengan Matriks Korelasi
4.5.2.1 Dekomposisi Eigen
> kor_eig <- eigen(kor)
> kor_eig
eigen() decomposition
$values
[1] 3.8404418 1.3369275 0.9260854 0.6142841 0.5414211 0.4219991 0.2079264
[8] 0.1109147
$vectors
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.40370599 0.01847086 0.17167700 -0.20016179 0.29918232 0.79798520
[2,] -0.46085266 -0.08429393 -0.02940232 -0.27219907 0.02529968 -0.18264602
[3,] -0.38422583 0.31184942 -0.23369424 0.51083462 -0.26428645 -0.05303322
[4,] -0.37213391 -0.13339743 -0.32885722 0.38714653 0.61407914 -0.19418945
[5,] -0.40008881 -0.14490192 -0.18493874 -0.59534205 -0.17216387 -0.34518862
[6,] 0.09364967 -0.79274731 0.23800655 0.16574225 0.17358656 -0.10878266
[7,] -0.35698759 -0.34458371 0.24081633 0.29841791 -0.60287403 0.16077523
[8,] 0.20552787 -0.33064428 -0.81120927 -0.06365987 -0.19919729 0.36400614
[,7] [,8]
[1,] 0.01211123 0.20175591
[2,] 0.63909690 -0.51294058
[3,] 0.35821679 0.48844276
[4,] -0.36766209 -0.18898101
[5,] -0.32481406 0.41952130
[6,] 0.30849399 0.37620384
[7,] -0.34590454 -0.31276262
[8,] 0.08712703 -0.080922524.5.2.2 Scree Plot
> plot(kor_eig$values, xlab="Eigenvalue Number", ylab="Eigenvalue Size",
+ main = "Scree Plot")
> lines(kor_eig$values)4.5.2.3 Nilai Kumulatif Eigen
> for (eg in kor_eig$values){
+ print(eg / sum(kor_eig$values))
+ }
[1] 0.4800552
[1] 0.1671159
[1] 0.1157607
[1] 0.07678552
[1] 0.06767763
[1] 0.05274988
[1] 0.0259908
[1] 0.013864334.5.2.4 Persamaan PCA
> kor_eig$vectors[,1:3]
[,1] [,2] [,3]
[1,] -0.40370599 0.01847086 0.17167700
[2,] -0.46085266 -0.08429393 -0.02940232
[3,] -0.38422583 0.31184942 -0.23369424
[4,] -0.37213391 -0.13339743 -0.32885722
[5,] -0.40008881 -0.14490192 -0.18493874
[6,] 0.09364967 -0.79274731 0.23800655
[7,] -0.35698759 -0.34458371 0.24081633
[8,] 0.20552787 -0.33064428 -0.811209274.6 Fungsi PCA
4.6.1
prcomp
> PCA1 <- prcomp(x=data_anmul_1,scale=T,center=T)
> PCA1
Standard deviations (1, .., p=8):
[1] 1.9597045 1.1562558 0.9623333 0.7837628 0.7358132 0.6496146 0.4559895
[8] 0.3330385
Rotation (n x k) = (8 x 8):
PC1 PC2 PC3 PC4 PC5
Tsampah 0.40370599 0.01847086 -0.17167700 0.20016179 -0.29918232
Limbah 0.46085266 -0.08429393 0.02940232 0.27219907 -0.02529968
Penduduk 0.38422583 0.31184942 0.23369424 -0.51083462 0.26428645
PHBS 0.37213391 -0.13339743 0.32885722 -0.38714653 -0.61407914
Rumah 0.40008881 -0.14490192 0.18493874 0.59534205 0.17216387
STBM -0.09364967 -0.79274731 -0.23800655 -0.16574225 -0.17358656
Kesling 0.35698759 -0.34458371 -0.24081633 -0.29841791 0.60287403
Tinggi -0.20552787 -0.33064428 0.81120927 0.06365987 0.19919729
PC6 PC7 PC8
Tsampah 0.79798520 0.01211123 0.20175591
Limbah -0.18264602 0.63909690 -0.51294058
Penduduk -0.05303322 0.35821679 0.48844276
PHBS -0.19418945 -0.36766209 -0.18898101
Rumah -0.34518862 -0.32481406 0.41952130
STBM -0.10878266 0.30849399 0.37620384
Kesling 0.16077523 -0.34590454 -0.31276262
Tinggi 0.36400614 0.08712703 -0.08092252> print(PCA1$rotation[,1:3],digits=4)
PC1 PC2 PC3
Tsampah 0.40371 0.01847 -0.1717
Limbah 0.46085 -0.08429 0.0294
Penduduk 0.38423 0.31185 0.2337
PHBS 0.37213 -0.13340 0.3289
Rumah 0.40009 -0.14490 0.1849
STBM -0.09365 -0.79275 -0.2380
Kesling 0.35699 -0.34458 -0.2408
Tinggi -0.20553 -0.33064 0.8112
> summary(PCA1)
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 1.9597 1.1563 0.9623 0.78376 0.73581 0.64961 0.45599
Proportion of Variance 0.4801 0.1671 0.1158 0.07679 0.06768 0.05275 0.02599
Cumulative Proportion 0.4801 0.6472 0.7629 0.83972 0.90739 0.96014 0.98614
PC8
Standard deviation 0.33304
Proportion of Variance 0.01386
Cumulative Proportion 1.000005 HASIL DAN PEMBAHASAN
5.1 Struktur Data
Pemanggilan data dapat memanfaatkan fungsi import yang tersedia di dalam RStudio. Salah satu caranya adalah memanfaatkan file bertipe .xlsx
> library(readxl)
> data_anmul_1 <- read_excel("data anmul 1.xlsx")
> View(data_anmul_1)
> head(data_anmul_1)
# A tibble: 6 × 8
Tsampah Limbah Penduduk PHBS Rumah STBM Kesling Tinggi
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 992 388 267 8814 5361 14 1 198
2 673 785 511 6550 6286 14 2 25
3 1333 3472 919 3433 12317 17 2 23
4 697 463 582 6372 5263 15 1 40
5 1408 1583 638 3386 9484 14 2 50
6 931 820 512 11484 7366 11 0 50
> str(data_anmul_1)
tibble [24 × 8] (S3: tbl_df/tbl/data.frame)
$ Tsampah : num [1:24] 992 673 1333 697 1408 ...
$ Limbah : num [1:24] 388 785 3472 463 1583 ...
$ Penduduk: num [1:24] 267 511 919 582 638 ...
$ PHBS : num [1:24] 8814 6550 3433 6372 3386 ...
$ Rumah : num [1:24] 5361 6286 12317 5263 9484 ...
$ STBM : num [1:24] 14 14 17 15 14 11 10 11 7 14 ...
$ Kesling : num [1:24] 1 2 2 1 2 0 1 1 1 2 ...
$ Tinggi : num [1:24] 198 25 23 40 50 50 26 45 5 15 ...5.2 Statistika Deskriptif
> summary(data_anmul_1)
Tsampah Limbah Penduduk PHBS
Min. : 103.0 Min. : 39.0 Min. : 117 Min. : 973
1st Qu.: 976.8 1st Qu.: 798.5 1st Qu.: 632 1st Qu.: 5047
Median :1909.0 Median :1225.5 Median : 981 Median : 7768
Mean :2202.8 Mean :2035.1 Mean :1462 Mean : 8299
3rd Qu.:3048.5 3rd Qu.:3612.5 3rd Qu.:1318 3rd Qu.:12066
Max. :7756.0 Max. :5878.0 Max. :8581 Max. :16538
Rumah STBM Kesling Tinggi
Min. : 465 Min. : 4.00 Min. :0.000 Min. : 1.00
1st Qu.: 4521 1st Qu.: 9.50 1st Qu.:1.000 1st Qu.: 8.00
Median : 5872 Median :12.50 Median :2.000 Median : 9.50
Mean : 8126 Mean :11.75 Mean :1.542 Mean : 26.17
3rd Qu.:11670 3rd Qu.:15.25 3rd Qu.:2.000 3rd Qu.: 29.50
Max. :21278 Max. :17.00 Max. :3.000 Max. :198.00 Interpretasi :
Berdasarkan output statistika deskriptif, dapat diketahui nilai Min, Q1, Median, Mean, Q3, dan Max pada masing-masing variabel.
5.3 Eksplorasi Korelasi
> library(corrplot)
> kor <- cor(data_anmul_1)
> corrplot(kor, method="number")Interpretasi :
Berdasarkan output di atas, dapat diketahui tingkat korelasi antar variabel dalam analisis. Variabel akan memiliki nilai korelasi sempurna sebesar 1 dengan variabel itu sendiri.Terdapat korelasi yang tinggi pada \(X_2\) dengan \(X_5\).
5.4 Menampilkan Kumulatif Nilai Eigen dan Vektor Eigen
5.4.1 Dengan Matriks Kovarians
5.4.1.1 Dekomposisi Eigen
> sc <- scale(data_anmul_1)
> sc
Tsampah Limbah Penduduk PHBS Rumah STBM
[1,] -0.74200835 -0.93683007 -0.67736927 0.11640128 -0.51746481 0.52496830
[2,] -0.93750083 -0.71102393 -0.53904194 -0.39506402 -0.34432401 0.52496830
[3,] -0.53303363 0.81729122 -0.30774051 -1.09923246 0.78455399 1.22492603
[4,] -0.92279293 -0.89417148 -0.49879096 -0.43527640 -0.53580837 0.75828754
[5,] -0.48707145 -0.25713651 -0.46704370 -1.10985033 0.25427520 0.52496830
[6,] -0.77939093 -0.69111658 -0.53847502 0.71958695 -0.14217043 -0.17498943
[7,] -0.11263288 -0.12062902 -0.23744301 -0.95306724 -0.72747992 -0.40830868
[8,] -0.92401859 -0.69054780 -0.18642064 -1.16745795 -0.47123154 -0.17498943
[9,] -0.24745528 -0.90042807 -0.48064967 -1.65497655 -0.65803642 -1.10826641
[10,] 0.38253302 1.58742099 -0.41261983 1.64017930 2.46186716 0.52496830
[11,] -0.32834872 -0.76335180 -0.41715516 -0.32073890 -0.76323115 -0.87494717
[12,] -1.08703113 -0.56769106 -0.43869794 -0.50643875 -0.03959621 0.05832981
[13,] -1.28681341 -1.13533472 -0.76240656 -1.26234109 -0.81171058 -1.80822414
[14,] 0.07918262 -0.40445085 -0.44946933 0.09810239 -1.43389437 0.29164906
[15,] 0.84276767 -0.51650075 -0.16714552 0.08093306 0.95806914 0.99160679
[16,] 0.49713206 -0.17580080 -0.09231270 -0.63837150 -0.48901356 0.99160679
[17,] -0.24806811 -0.59044231 0.12935117 0.55218598 -1.04287694 -0.40830868
[18,] 0.58170248 0.01587848 -0.04866023 -0.66186637 -0.50941610 -0.40830868
[19,] 0.96288217 1.13694627 0.16903524 0.83435036 -0.37221372 1.22492603
[20,] -0.04889865 -0.70078586 -0.09854877 1.27487922 -0.72467223 1.22492603
[21,] 0.65033933 1.53281800 -0.10705250 0.90167221 0.62320548 1.22492603
[22,] 0.16988133 1.34568897 4.03596432 1.86134738 0.84145648 -1.57490490
[23,] 3.40316759 1.43441885 1.32384165 1.11764430 1.58380934 -1.57490490
[24,] 1.11547661 2.18577884 1.26885087 1.00739913 2.07590357 -1.57490490
Kesling Tinggi
[1,] -0.6130036 4.262641370
[2,] 0.5186953 -0.028941309
[3,] 0.5186953 -0.078554982
[4,] -0.6130036 0.343161235
[5,] 0.5186953 0.591229598
[6,] -1.7447025 0.591229598
[7,] -0.6130036 -0.004134473
[8,] -0.6130036 0.467195417
[9,] -0.6130036 -0.525078035
[10,] 0.5186953 -0.277009672
[11,] 0.5186953 -0.450657526
[12,] -0.6130036 0.740070616
[13,] -1.7447025 -0.624305380
[14,] -0.6130036 -0.425850690
[15,] 1.6503943 -0.450657526
[16,] -0.6130036 -0.450657526
[17,] -1.7447025 -0.450657526
[18,] 0.5186953 -0.450657526
[19,] 1.6503943 -0.401043853
[20,] 0.5186953 -0.450657526
[21,] 0.5186953 -0.401043853
[22,] 1.6503943 -0.500271199
[23,] 0.5186953 -0.525078035
[24,] 0.5186953 -0.500271199
attr(,"scaled:center")
Tsampah Limbah Penduduk PHBS Rumah STBM
2202.791667 2035.083333 1461.833333 8298.750000 8125.541667 11.750000
Kesling Tinggi
1.541667 26.166667
attr(,"scaled:scale")
Tsampah Limbah Penduduk PHBS Rumah STBM
1631.7763322 1758.1452410 1763.9320126 4426.4977544 5342.4727948 4.2859731
Kesling Tinggi
0.8836272 40.3114685
>
> s <- cov(sc)
> s_eig <- eigen(s)
> s_eig
eigen() decomposition
$values
[1] 3.8404418 1.3369275 0.9260854 0.6142841 0.5414211 0.4219991 0.2079264
[8] 0.1109147
$vectors
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.40370599 0.01847086 0.17167700 -0.20016179 0.29918232 0.79798520
[2,] -0.46085266 -0.08429393 -0.02940232 -0.27219907 0.02529968 -0.18264602
[3,] -0.38422583 0.31184942 -0.23369424 0.51083462 -0.26428645 -0.05303322
[4,] -0.37213391 -0.13339743 -0.32885722 0.38714653 0.61407914 -0.19418945
[5,] -0.40008881 -0.14490192 -0.18493874 -0.59534205 -0.17216387 -0.34518862
[6,] 0.09364967 -0.79274731 0.23800655 0.16574225 0.17358656 -0.10878266
[7,] -0.35698759 -0.34458371 0.24081633 0.29841791 -0.60287403 0.16077523
[8,] 0.20552787 -0.33064428 -0.81120927 -0.06365987 -0.19919729 0.36400614
[,7] [,8]
[1,] 0.01211123 -0.20175591
[2,] 0.63909690 0.51294058
[3,] 0.35821679 -0.48844276
[4,] -0.36766209 0.18898101
[5,] -0.32481406 -0.41952130
[6,] 0.30849399 -0.37620384
[7,] -0.34590454 0.31276262
[8,] 0.08712703 0.08092252> qchisq(0.95,1)
[1] 3.8414595.4.1.2 Menggambar Scree Plot Berdasarkan Nilai Eigen
> plot(s_eig$values, xlab="Eigenvalue Number", ylab = "Eigenvalue Size",
+ main = "Scree Plot")
> lines(s_eig$values)Interpretasi :
Berdasarkan scree plot, banyaknya komponen utama yang dipilih adalah 3. Hal ini karena nilai eigen yang bernilai lebih besar dari $ $ yaitu nilai eigen komponen utama (PC1,PC2 dan PC3).
5.4.1.3 Nilai Kumulatif Eigen
> for (eg in s_eig$values){
+ print(eg / sum(s_eig$values))
+ }
[1] 0.4800552
[1] 0.1671159
[1] 0.1157607
[1] 0.07678552
[1] 0.06767763
[1] 0.05274988
[1] 0.0259908
[1] 0.01386433Interpretasi :
Diketahui berdasarkan nilai kumulasi eigen, 3 PC sudah menangkap sekitar 75% keragaman. Sehingga dapat disusun 3 buah PC.
5.4.1.4 Persamaan PCA
> s_eig$vectors[,1:3]
[,1] [,2] [,3]
[1,] -0.40370599 0.01847086 0.17167700
[2,] -0.46085266 -0.08429393 -0.02940232
[3,] -0.38422583 0.31184942 -0.23369424
[4,] -0.37213391 -0.13339743 -0.32885722
[5,] -0.40008881 -0.14490192 -0.18493874
[6,] 0.09364967 -0.79274731 0.23800655
[7,] -0.35698759 -0.34458371 0.24081633
[8,] 0.20552787 -0.33064428 -0.81120927Interpretasi :
Hasil di atas dapat dituliskan dalam bentuk persamaan yaitu:
\(PC_1\) = \(-0.40370599X_1\)\(-0.46085266X_2\)\(-0.38422583X_3\)\(-0.37213391X_4\)\(-0.40008881X_5\)\(+0.09364967X_6\)\(-0.35698759X_7\)\(+0.20552787X_8\)
\(PC_2\) = \(0.01847086X_1\)\(-0.08429393X_2\)\(+0.31184942X_3\)\(-0.13339743X_4\)\(-0.14490192X_5\)\(-0.79274731X_6\)\(-0.34458371X_7\)\(-0.33064428X_8\)
\(PC_3\) = \(0.17167700X_1\)\(-0.02940232X_2\)\(-0.23369424X_3\)\(-0.32885722X_4\)\(-0.18493874X_5\)\(+0.23800655X_6\)\(+0.24081633X_7\)\(-0.81120927X_8\)
5.4.2 Dengan Matriks Korelasi
5.4.2.1 Dekomposisi Eigen
> kor_eig <- eigen(kor)
> kor_eig
eigen() decomposition
$values
[1] 3.8404418 1.3369275 0.9260854 0.6142841 0.5414211 0.4219991 0.2079264
[8] 0.1109147
$vectors
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.40370599 0.01847086 0.17167700 -0.20016179 0.29918232 0.79798520
[2,] -0.46085266 -0.08429393 -0.02940232 -0.27219907 0.02529968 -0.18264602
[3,] -0.38422583 0.31184942 -0.23369424 0.51083462 -0.26428645 -0.05303322
[4,] -0.37213391 -0.13339743 -0.32885722 0.38714653 0.61407914 -0.19418945
[5,] -0.40008881 -0.14490192 -0.18493874 -0.59534205 -0.17216387 -0.34518862
[6,] 0.09364967 -0.79274731 0.23800655 0.16574225 0.17358656 -0.10878266
[7,] -0.35698759 -0.34458371 0.24081633 0.29841791 -0.60287403 0.16077523
[8,] 0.20552787 -0.33064428 -0.81120927 -0.06365987 -0.19919729 0.36400614
[,7] [,8]
[1,] 0.01211123 0.20175591
[2,] 0.63909690 -0.51294058
[3,] 0.35821679 0.48844276
[4,] -0.36766209 -0.18898101
[5,] -0.32481406 0.41952130
[6,] 0.30849399 0.37620384
[7,] -0.34590454 -0.31276262
[8,] 0.08712703 -0.080922525.4.2.2 Scree Plot
> plot(kor_eig$values, xlab="Eigenvalue Number", ylab="Eigenvalue Size",
+ main = "Scree Plot")
> lines(kor_eig$values)
Interpretasi :
Berdasarkan scree plot, banyaknya komponen utama yang dipilih adalah 3. Hal ini karena nilai eigen yang bernilai lebih besar dari $ $ yaitu nilai eigen komponen utama (PC1,PC2 dan PC3).
5.4.2.3 Nilai Kumulatif Eigen
> for (eg in kor_eig$values){
+ print(eg / sum(kor_eig$values))
+ }
[1] 0.4800552
[1] 0.1671159
[1] 0.1157607
[1] 0.07678552
[1] 0.06767763
[1] 0.05274988
[1] 0.0259908
[1] 0.01386433Interpretasi :
Diketahui berdasarkan nilai kumulasi eigen, 3 PC sudah menangkap sekitar 75% keragaman. Sehingga dapat disusun 3 buah PC.
5.4.2.4 Persamaan PCA
> kor_eig$vectors[,1:3]
[,1] [,2] [,3]
[1,] -0.40370599 0.01847086 0.17167700
[2,] -0.46085266 -0.08429393 -0.02940232
[3,] -0.38422583 0.31184942 -0.23369424
[4,] -0.37213391 -0.13339743 -0.32885722
[5,] -0.40008881 -0.14490192 -0.18493874
[6,] 0.09364967 -0.79274731 0.23800655
[7,] -0.35698759 -0.34458371 0.24081633
[8,] 0.20552787 -0.33064428 -0.81120927Interpretasi :
Hasil di atas dapat dituliskan dalam bentuk persamaan yaitu:
\(PC_1\) = \(-0.40370599X_1\)\(-0.46085266X_2\)\(-0.38422583X_3\)\(-0.37213391X_4\)\(-0.40008881X_5\)\(+0.09364967X_6\)\(-0.35698759X_7\)\(+0.20552787X_8\)
\(PC_2\) = \(0.01847086X_1\)\(-0.08429393X_2\)\(+0.31184942X_3\)\(-0.13339743X_4\)\(-0.14490192X_5\)\(-0.79274731X_6\)\(-0.34458371X_7\)\(-0.33064428X_8\)
\(PC_3\) = \(0.17167700X_1\)\(-0.02940232X_2\)\(-0.23369424X_3\)\(-0.32885722X_4\)\(-0.18493874X_5\)\(+0.23800655X_6\)\(+0.24081633X_7\)\(-0.81120927X_8\)
5.5 Fungsi PCA
5.5.1
prcomp
> PCA1 <- prcomp(x=data_anmul_1,scale=T,center=T)
> PCA1
Standard deviations (1, .., p=8):
[1] 1.9597045 1.1562558 0.9623333 0.7837628 0.7358132 0.6496146 0.4559895
[8] 0.3330385
Rotation (n x k) = (8 x 8):
PC1 PC2 PC3 PC4 PC5
Tsampah 0.40370599 0.01847086 -0.17167700 0.20016179 -0.29918232
Limbah 0.46085266 -0.08429393 0.02940232 0.27219907 -0.02529968
Penduduk 0.38422583 0.31184942 0.23369424 -0.51083462 0.26428645
PHBS 0.37213391 -0.13339743 0.32885722 -0.38714653 -0.61407914
Rumah 0.40008881 -0.14490192 0.18493874 0.59534205 0.17216387
STBM -0.09364967 -0.79274731 -0.23800655 -0.16574225 -0.17358656
Kesling 0.35698759 -0.34458371 -0.24081633 -0.29841791 0.60287403
Tinggi -0.20552787 -0.33064428 0.81120927 0.06365987 0.19919729
PC6 PC7 PC8
Tsampah 0.79798520 0.01211123 0.20175591
Limbah -0.18264602 0.63909690 -0.51294058
Penduduk -0.05303322 0.35821679 0.48844276
PHBS -0.19418945 -0.36766209 -0.18898101
Rumah -0.34518862 -0.32481406 0.41952130
STBM -0.10878266 0.30849399 0.37620384
Kesling 0.16077523 -0.34590454 -0.31276262
Tinggi 0.36400614 0.08712703 -0.08092252> print(PCA1$rotation[,1:3],digits=4)
PC1 PC2 PC3
Tsampah 0.40371 0.01847 -0.1717
Limbah 0.46085 -0.08429 0.0294
Penduduk 0.38423 0.31185 0.2337
PHBS 0.37213 -0.13340 0.3289
Rumah 0.40009 -0.14490 0.1849
STBM -0.09365 -0.79275 -0.2380
Kesling 0.35699 -0.34458 -0.2408
Tinggi -0.20553 -0.33064 0.8112
> summary(PCA1)
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 1.9597 1.1563 0.9623 0.78376 0.73581 0.64961 0.45599
Proportion of Variance 0.4801 0.1671 0.1158 0.07679 0.06768 0.05275 0.02599
Cumulative Proportion 0.4801 0.6472 0.7629 0.83972 0.90739 0.96014 0.98614
PC8
Standard deviation 0.33304
Proportion of Variance 0.01386
Cumulative Proportion 1.00000Interpretasi :
Hasil di atas dapat dituliskan dalam bentuk persamaan principal component :
\(PC_1\) = \(0.4037X_1\)\(+0.4608X_2\)\(+0.3842X_3\)\(+0.3721X_4\)\(+0.4000X_5\)\(-0.0936X_6\)\(+0.3569X_7\)\(-0.2055X_8\)
\(PC_2\) = \(0.0184X_1\)\(-0.08429X_2\)\(+0.3118X_3\)\(-0.1333X_4\)\(-0.1449X_5\)\(-0.7927X_6\)\(-0.3445X_7\)\(-0.3306X_8\)
\(PC_3\) = \(-0.1716X_1\)\(+0.0294X_2\)\(+0.2336X_3\)\(+0.3288X_4\)\(+0.1849X_5\)\(-0.2380X_6\)\(-0.2408X_7\)\(+0.8112X_8\)
6 KESIMPULAN
Dari persamaan tersebut dapat disimpulkan :
\(PC_1\) berkorelasi dengan variabel tempat sampah (\(X_1\)),pembuangan limbah (\(X_2\)) dan kondisi rumah sehat (\(X_5\)). Berdasarkan informasi tersebut maka \(PC_1\) dapat dinamakan sebagai “Faktor Kesehatan Lingkungan”.
\(PC_2\) berkorelasi dengan variabel kepadatan penduduk (\(X_3\)),kesehatan lingkungan (\(X_7\)) dan tinggi ventilasi (\(X_8\)). Berdasarkan informasi tersebut maka \(PC_2\) dapat dinamakan sebagai “Faktor Kualitas Lingkungan”.
\(PC_3\) berkorelasi dengan variabel pola hidup bersih dan sehat (\(X_4\)) dan sanitasi total berbasis masyarakat (\(X_6\)). Berdasarkan informasi tersebut maka \(PC_3\) dapat dinamakan sebagai “Faktor Hidup Bersih dan Sanitasi Masyarakat”.
7 DAFTAR PUSTAKA
Nugroho, S. (2008). Statistika Multivariat Terapan. Bengkulu: UNIB Press Bengkulu.
APRILIANTY RIADI, R. (2020, 06 24). Analisis PCA Menggunakan Rstudio. Retrieved 10 21, 2023, from Medium: https://medium.com/@17611063/analisis-pca-menggunakan-rstudio-3201c252badb
Hair Jr, J. F. (2014). Multivariate Data Analysis Joseph F. Hair Jr. William C.