#BiocManager::install("PharmacoGx")
library(PharmacoGx)
## 载入需要的程辑包:CoreGx
## 载入需要的程辑包:BiocGenerics
## 
## 载入程辑包:'BiocGenerics'
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## 载入需要的程辑包:SummarizedExperiment
## 载入需要的程辑包:MatrixGenerics
## 载入需要的程辑包:matrixStats
## Warning: 程辑包'matrixStats'是用R版本4.2.3 来建造的
## 
## 载入程辑包:'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
## 
##     colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##     colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##     colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##     colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##     colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##     colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##     colWeightedMeans, colWeightedMedians, colWeightedSds,
##     colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##     rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##     rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##     rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##     rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##     rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##     rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##     rowWeightedSds, rowWeightedVars
## 载入需要的程辑包:GenomicRanges
## 载入需要的程辑包:stats4
## 载入需要的程辑包:S4Vectors
## 
## 载入程辑包:'S4Vectors'
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## 载入需要的程辑包:IRanges
## 
## 载入程辑包:'IRanges'
## The following object is masked from 'package:grDevices':
## 
##     windows
## 载入需要的程辑包:GenomeInfoDb
## 载入需要的程辑包:Biobase
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## 
## 载入程辑包:'Biobase'
## The following object is masked from 'package:MatrixGenerics':
## 
##     rowMedians
## The following objects are masked from 'package:matrixStats':
## 
##     anyMissing, rowMedians
## 
## 载入程辑包:'PharmacoGx'
## The following objects are masked from 'package:CoreGx':
## 
##     .parseToRoxygen, amcc, connectivityScore, cosinePerm, gwc, mcc
availablePSets()
##    Dataset Name             Date Created         PSet Name      version
## 1          GDSC 2021-12-16T19:58:28.388Z GDSC_2020(v2-8.2) 2020(v2-8.2)
## 2          FIMM 2020-06-24T14:39:26.588Z         FIMM_2016         2016
## 3         Tavor 2021-03-05T17:05:08.535Z        Tavor_2020         2020
## 4         NCI60 2021-08-18T16:28:45.207Z        NCI60_2021         2021
## 5     UHNBreast 2020-06-24T14:39:26.588Z    UHNBreast_2019         2019
## 6          GDSC 2021-12-16T19:10:35.091Z GDSC_2020(v1-8.2) 2020(v1-8.2)
## 7         PRISM 2021-08-18T16:28:45.207Z        PRISM_2020         2020
## 8       BeatAML 2021-03-05T16:55:27.968Z      BeatAML_2018         2018
## 9          gCSI 2021-06-11T21:58:16.390Z         gCSI_2019         2019
## 10       CTRPv2 2020-06-24T14:39:26.588Z       CTRPv2_2015         2015
## 11         GRAY 2021-02-23T14:39:26.588Z         GRAY_2017         2017
## 12         CCLE 2020-06-24T14:39:26.588Z         CCLE_2015         2015
## 13         PDTX 2022-01-07T00:00:00.000Z         PDTX_2019         2019
## 14          GBM 2022-01-07T00:00:00.000Z          GBM_scr2         2021
## 15          GBM 2022-01-07T00:00:00.000Z          GBM_scr3         2021
##           type
## 1  sensitivity
## 2  sensitivity
## 3  sensitivity
## 4  sensitivity
## 5         both
## 6  sensitivity
## 7  sensitivity
## 8  sensitivity
## 9         <NA>
## 10 sensitivity
## 11 sensitivity
## 12 sensitivity
## 13        <NA>
## 14        <NA>
## 15        <NA>
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         publication
## 1                  Yang, Wanjuan et al. “Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells.” Nucleic acids research vol. 41,Database issue (2013): D955-61. doi:10.1093/nar/gks1111, Iorio F, Knijnenburg TA, Vis DJ, et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell. 2016;166(3):740‐754. doi:10.1016/j.cell.2016.06.017, Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483(7391):570‐575. Published 2012 Mar 28. doi:10.1038/nature11005, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531057/, https://pubmed.ncbi.nlm.nih.gov/27397505/, https://pubmed.ncbi.nlm.nih.gov/22460902/
## 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Mpindi, J., Yadav, B., <U+00D6>stling, P. et al. Consistency in drug response profiling. Nature 540, E5–E6 (2016) doi:10.1038/nature20171, https://www.nature.com/articles/nature20171
## 3                                                                                                                                                                                                                                                                                              Sigal Tavor, Tali Shalit, Noa Chapal Ilani, Yoni Moskovitz, Nir Livnat, Yoram Groner, Haim Barr, Mark D. Minden, Alexander Plotnikov, Michael W. Deininger, Nathali Kaushansky, Liran I. Shlush. Dasatinib response in acute myeloid leukemia is correlated with FLT3/ITD, PTPN11 mutations and a unique gene expression signature. Haematologica 2020;105(12):2795-2804; https://doi.org/10.3324/haematol.2019.240705., https://haematologica.org/article/view/9762
## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Shoemaker, R. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6, 813–823 (2006). https://doi.org/10.1038/nrc1951, https://www.nature.com/articles/nrc1951
## 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Mammoliti, Anthony et al. “Creating reproducible pharmacogenomic analysis pipelines.” Scientific data vol. 6,1 166. 3 Sep. 2019, doi:10.1038/s41597-019-0174-7, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722117/
## 6                  Yang, Wanjuan et al. “Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells.” Nucleic acids research vol. 41,Database issue (2013): D955-61. doi:10.1093/nar/gks1111, Iorio F, Knijnenburg TA, Vis DJ, et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell. 2016;166(3):740‐754. doi:10.1016/j.cell.2016.06.017, Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483(7391):570‐575. Published 2012 Mar 28. doi:10.1038/nature11005, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531057/, https://pubmed.ncbi.nlm.nih.gov/27397505/, https://pubmed.ncbi.nlm.nih.gov/22460902/
## 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Corsello SM, Nagari RT, Spangler RD, et al. Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat Cancer. 2020;1(2):235-248. doi:10.1038/s43018-019-0018-6, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328899/
## 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Tyner, J.W., Tognon, C.E., Bottomly, D. et al. Functional genomic landscape of acute myeloid leukaemia. Nature 562, 526–531 (2018). https://doi.org/10.1038/s41586-018-0623-z, https://www.nature.com/articles/s41586-018-0623-z#citeas
## 9                                                                                                                                                                                                                                                                                                                                                                                                                                 Petr Smirnov, Ian Smith, Zhaleh Safikhani, Wail Ba-alawi, Farnoosh Khodakarami, Eva Lin, Yihong Yu, Scott Martin, Janosch Ortmann, Tero Aittokallio, Marc Hafner, Benjamin Haibe-Kains. Evaluation of statistical approaches for association testing in noisy drug screening data. arXiv (2021), https://arxiv.org/abs/2104.14036
## 10 Rees, Matthew G et al. “Correlating chemical sensitivity and basal gene expression reveals mechanism of action.” Nature chemical biology vol. 12,2 (2016): 109-16. doi:10.1038/nchembio.1986, Seashore-Ludlow, Brinton et al. “Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.” Cancer discovery vol. 5,11 (2015): 1210-23. doi:10.1158/2159-8290.CD-15-0235, Basu, Amrita et al. “An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules.” Cell vol. 154,5 (2013): 1151-1161. doi:10.1016/j.cell.2013.08.003, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718762/, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631646/, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954635/
## 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Hafner, Marc et al. “Quantification of sensitivity and resistance of breast cancer cell lines to anti-cancer drugs using GR metrics.” Scientific data vol. 4 170166. 7 Nov. 2017, doi:10.1038/sdata.2017.166, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5674849/
## 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Barretina, Jordi et al. “The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.” Nature vol. 483,7391 603-7. 28 Mar. 2012, doi:10.1038/nature11003, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320027/
## 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Bruna, A. et al. (2016). A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell. 167(1):260-274., https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037319/
## 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NULL
## 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NULL
##                       DOI
## 1  10.5281/zenodo.7829919
## 2  10.5281/zenodo.7823755
## 3  10.5281/zenodo.5979590
## 4  10.5281/zenodo.7893032
## 5  10.5281/zenodo.7826860
## 6  10.5281/zenodo.7829915
## 7  10.5281/zenodo.7826864
## 8  10.5281/zenodo.7829853
## 9  10.5281/zenodo.7829857
## 10 10.5281/zenodo.7826870
## 11 10.5281/zenodo.7826847
## 12 10.5281/zenodo.3905461
## 13 10.5281/zenodo.7826875
## 14 10.5281/zenodo.7829873
## 15 10.5281/zenodo.7829873
##                                                                  Download
## 1    https://zenodo.org/record/7829919/files/PSet_GDSC2020.rds?download=1
## 2        https://zenodo.org/record/7823755/files/PSet_FIMM.rds?download=1
## 3            https://zenodo.org/record/5979590/files/Tavor.rds?download=1
## 4       https://zenodo.org/record/7893032/files/PSet_NCI60.rds?download=1
## 5   https://zenodo.org/record/7826860/files/PSet_UHNBreast.rds?download=1
## 6    https://zenodo.org/record/7829915/files/PSet_GDSC2020.rds?download=1
## 7       https://zenodo.org/record/7826864/files/PSet_PRISM.rds?download=1
## 8     https://zenodo.org/record/7829853/files/PSet_BeatAML.rds?download=1
## 9    https://zenodo.org/record/7829857/files/PSet_gCSI2019.rds?download=1
## 10     https://zenodo.org/record/7826870/files/PSet_CTRPv2.rds?download=1
## 11   https://zenodo.org/record/7826847/files/PSet_GRAY2017.rds?download=1
## 12            https://zenodo.org/record/3905462/files/CCLE.rds?download=1
## 13 https://zenodo.org/record/7826875/files/PSet_PDTXBreast.rds?download=1
## 14   https://zenodo.org/record/7829873/files/PSet_GBM_scr2.rds?download=1
## 15   https://zenodo.org/record/7829873/files/PSet_GBM_scr3.rds?download=1
#?downloadPSet
GDSC <- downloadPSet("GDSC_2020(v1-8.2)")
dim(GDSC)
## Cells Drugs 
##  1084   343
head(GDSC@sample)
##           Sample.Name COSMIC.identifier Whole.Exome.Sequencing..WES.
## COLO 205     COLO-205            905961                            Y
## NCI-H2369       H2369           1290808                            Y
## NCI-H2373       H2373           1290809                            Y
## NCI-H2461       H2461           1290810                            Y
## NCI-H2591       H2591           1240131                            Y
## NCI-H2595       H2595           1240132                            Y
##           Copy.Number.Alterations..CNA. Gene.Expression Methylation
## COLO 205                              Y               Y           Y
## NCI-H2369                             Y               Y           Y
## NCI-H2373                             Y               Y           Y
## NCI-H2461                             Y               Y           Y
## NCI-H2591                             Y               Y           Y
## NCI-H2595                             Y               Y           Y
##           Drug..Response GDSC..Tissue.descriptor.1 GDSC..Tissue..descriptor.2
## COLO 205               Y           large_intestine            large_intestine
## NCI-H2369              Y                      lung               mesothelioma
## NCI-H2373              Y                      lung               mesothelioma
## NCI-H2461              Y                      lung               mesothelioma
## NCI-H2591              Y                      lung               mesothelioma
## NCI-H2595              Y                      lung               mesothelioma
##           Cancer.Type...matching.TCGA.label.
## COLO 205                           COAD/READ
## NCI-H2369                               MESO
## NCI-H2373                               MESO
## NCI-H2461                               MESO
## NCI-H2591                               MESO
## NCI-H2595                               MESO
##           Microsatellite...instability.Status..MSI. Screen.Medium
## COLO 205                                  MSS/MSI-L             R
## NCI-H2369                                 MSS/MSI-L             R
## NCI-H2373                                 MSS/MSI-L             R
## NCI-H2461                                 MSS/MSI-L             R
## NCI-H2591                                 MSS/MSI-L             R
## NCI-H2595                                 MSS/MSI-L             R
##           Growth.Properties  sampleid tissueid         Cellosaurus.Disease.Type
## COLO 205         Suspension  COLO 205    Bowel             Colon adenocarcinoma
## NCI-H2369          Adherent NCI-H2369   Pleura   Pleural malignant mesothelioma
## NCI-H2373          Adherent NCI-H2373   Pleura Pleural sarcomatoid mesothelioma
## NCI-H2461          Adherent NCI-H2461   Pleura Pleural epithelioid mesothelioma
## NCI-H2591          Adherent NCI-H2591   Pleura Pleural epithelioid mesothelioma
## NCI-H2595          Adherent NCI-H2595   Pleura Pleural epithelioid mesothelioma
##           Cellosaurus.Accession.id    PharmacoDB.id unique.tissueid.fromstudies
## COLO 205                 CVCL_0218 COLO205_221_2019             large_intestine
## NCI-H2369                CVCL_A532   H2369_420_2019                      pleura
## NCI-H2373                CVCL_A533   H2373_421_2019                        lung
## NCI-H2461                CVCL_A536   H2461_422_2019                      pleura
## NCI-H2591                CVCL_A543   H2591_423_2019                        lung
## NCI-H2595                CVCL_A545   H2595_424_2019                        lung
##              CellLine.Type Metastatic
## COLO 205  Cancer cell line       TRUE
## NCI-H2369 Cancer cell line         NA
## NCI-H2373 Cancer cell line         NA
## NCI-H2461 Cancer cell line         NA
## NCI-H2591 Cancer cell line         NA
## NCI-H2595 Cancer cell line         NA
head(GDSC@treatment)
##                      DRUG_ID SCREENING_SITE                 DRUG_NAME
## (-)-Parthenolide          89            MGH              Parthenolide
## (5Z)-7-Oxozeaenol       1242         SANGER         (5Z)-7-Oxozeaenol
## 5-Fluorouracil    179///1073   MGH///SANGER            5-Fluorouracil
## 681640                  1046         SANGER            Wee1 Inhibitor
## A-443654                  86            MGH                  A-443654
## A-484954                 409            MGH eEF2K Inhibitor, A-484954
##                                      SYNONYMS                     TARGET
## (-)-Parthenolide                                                   HDAC1
## (5Z)-7-Oxozeaenol 5Z-7-Oxozeaenol, LL-Z1640-2                       TAK1
## 5-Fluorouracil                           5-FU Antimetabolite (DNA & RNA)
## 681640                 681640, Wee1 Inhibitor                WEE1, CHEK1
## A-443654                           KIN001-139           AKT1, AKT2, AKT3
## A-484954                                                           eEF2K
##                                  TARGET_PATHWAY       treatmentid
## (-)-Parthenolide  Chromatin histone acetylation  (-)-Parthenolide
## (5Z)-7-Oxozeaenol                Other, kinases (5Z)-7-Oxozeaenol
## 5-Fluorouracil                            Other    5-Fluorouracil
## 681640                               Cell cycle            681640
## A-443654                    PI3K/MTOR signaling          A-443654
## A-484954                         Other, kinases          A-484954
##                                                                      smiles
## (-)-Parthenolide                      CC1=CCCC2(C(O2)C3C(CC1)C(=C)C(=O)O3)C
## (5Z)-7-Oxozeaenol                                                      <NA>
## 5-Fluorouracil                                         C1=C(C(=O)NC(=O)N1)F
## 681640                                                                 <NA>
## A-443654          CC1=C2C=C(C=CC2=NN1)C3=CC(=CN=C3)OCC(CC4=CNC5=CC=CC=C54)N
## A-484954                        CCN1C(=O)C2=CC(=C(N=C2N(C1=O)C3CC3)N)C(=O)N
##                                      inchikey      cid   FDA
## (-)-Parthenolide  KTEXNACQROZXEV-ZRPLFPEYSA-N  5420804    NA
## (5Z)-7-Oxozeaenol                        <NA>  9863776    NA
## 5-Fluorouracil    GHASVSINZRGABV-UHFFFAOYSA-N     3385    NA
## 681640                                   <NA>       NA    NA
## A-443654          YWTBGJGMTBHQTM-IBGZPJMESA-N 10172943    NA
## A-484954          HWODCHXORCTEGU-UHFFFAOYSA-N 14998470 FALSE
head(GDSC@annotation)
## $name
## [1] "GDSC_v1"
## 
## $dateCreated
## [1] "Tue Apr 11 22:30:47 2023"
## 
## $sessionInfo
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] dplyr_1.0.10                reshape2_1.4.4             
##  [3] data.table_1.14.2           PharmacoGx_2.6.0           
##  [5] CoreGx_1.6.0                SummarizedExperiment_1.24.0
##  [7] Biobase_2.54.0              GenomicRanges_1.46.1       
##  [9] GenomeInfoDb_1.30.1         IRanges_2.28.0             
## [11] S4Vectors_0.32.4            MatrixGenerics_1.6.0       
## [13] matrixStats_0.62.0          BiocGenerics_0.40.0        
## 
## loaded via a namespace (and not attached):
##   [1] fgsea_1.20.0                colorspace_2.0-3           
##   [3] deldir_1.0-6                ellipsis_0.3.2             
##   [5] htmlTable_2.4.1             lsa_0.73.3                 
##   [7] XVector_0.34.0              base64enc_0.1-3            
##   [9] rstudioapi_0.14             SnowballC_0.7.0            
##  [11] MultiAssayExperiment_1.20.0 DT_0.25                    
##  [13] fansi_1.0.3                 splines_4.1.2              
##  [15] knitr_1.40                  Formula_1.2-4              
##  [17] jsonlite_1.8.2              magicaxis_2.2.14           
##  [19] cluster_2.1.4               png_0.1-7                  
##  [21] shinydashboard_0.7.2        shiny_1.7.3                
##  [23] mapproj_1.2.8               compiler_4.1.2             
##  [25] backports_1.4.1             assertthat_0.2.1           
##  [27] Matrix_1.5-1                fastmap_1.1.0              
##  [29] limma_3.50.3                cli_3.4.1                  
##  [31] later_1.3.0                 visNetwork_2.1.2           
##  [33] htmltools_0.5.3             tools_4.1.2                
##  [35] igraph_1.3.5                gtable_0.3.1               
##  [37] glue_1.6.2                  GenomeInfoDbData_1.2.7     
##  [39] RANN_2.6.1                  maps_3.4.0                 
##  [41] fastmatch_1.1-3             Rcpp_1.0.9                 
##  [43] slam_0.1-50                 vctrs_0.4.2                
##  [45] BumpyMatrix_1.2.0           xfun_0.33                  
##  [47] stringr_1.4.1               mime_0.12                  
##  [49] lifecycle_1.0.2             gtools_3.9.3               
##  [51] zlibbioc_1.40.0             MASS_7.3-58.1              
##  [53] scales_1.2.1                promises_1.2.0.1           
##  [55] relations_0.6-12            RColorBrewer_1.1-3         
##  [57] sets_1.0-21                 gridExtra_2.3              
##  [59] ggplot2_3.3.6               downloader_0.4             
##  [61] rpart_4.1.16                latticeExtra_0.6-30        
##  [63] stringi_1.7.8               NISTunits_1.0.1            
##  [65] plotrix_3.8-2               checkmate_2.1.0            
##  [67] caTools_1.18.2              BiocParallel_1.28.3        
##  [69] rlang_1.0.6                 pkgconfig_2.0.3            
##  [71] bitops_1.0-7                pracma_2.4.2               
##  [73] lattice_0.20-45             purrr_0.3.5                
##  [75] htmlwidgets_1.5.4           tidyselect_1.1.2           
##  [77] plyr_1.8.7                  magrittr_2.0.3             
##  [79] R6_2.5.1                    gplots_3.1.3               
##  [81] generics_0.1.3              Hmisc_4.7-1                
##  [83] DelayedArray_0.20.0         DBI_1.1.3                  
##  [85] sm_2.2-5.7.1                foreign_0.8-83             
##  [87] pillar_1.8.1                nnet_7.3-18                
##  [89] survival_3.4-0              RCurl_1.98-1.9             
##  [91] tibble_3.1.8                crayon_1.5.2               
##  [93] interp_1.1-3                KernSmooth_2.23-20         
##  [95] utf8_1.2.2                  jpeg_0.1-9                 
##  [97] grid_4.1.2                  marray_1.72.0              
##  [99] piano_2.10.1                digest_0.6.29              
## [101] xtable_1.8-4                httpuv_1.6.6               
## [103] munsell_0.5.0               celestial_1.4.6            
## [105] shinyjs_2.1.0              
## 
## $call
## PharmacoGx::PharmacoSet(name = paste("GDSC", version, sep = "_"), 
##     molecularProfiles = z, cell = cell.info, drug = drug.info, 
##     sensitivityInfo = sens.info, sensitivityRaw = sens.raw, sensitivityProfiles = sens.profiles, 
##     sensitivityN = NULL, curationDrug = curationDrug, curationCell = curationCell, 
##     curationTissue = curationTissue, datasetType = "sensitivity")
## 
## $version
## [1] 2
#https://bioc.ism.ac.jp/packages/3.10/bioc/vignettes/PharmacoGx/inst/doc/PharmacoGx.pdf
#https://mp.weixin.qq.com/s/zCImy_TPiI-FfVnH_WtNMg
#high AUC implying high sensitivity to the drug
dose <- c(0.0025,0.008,0.025,0.08,0.25,0.8,2.53,8) 
viability <- c(108.67,111,102.16,100.27,90,87,74,57)

computeAUC(dose, viability)
## Warning in CoreGx::.sanitizeInput(x = conc, y = viability, x_as_log =
## conc_as_log, : Warning: y data exceeds negative control.
## [1] 3.69127