library(dplyr)
library(ggplot2)
library(stringr)
library(reshape2)
Il dataset Israel-Palestine.csv scaricabile da Kaggle qui : https://www.kaggle.com/datasets/zsinghrahulk/israel-vs-palestine contiene le informazioni per i 2 paesi che vanno dal 2000 al 2020. Dà una sbirciatina all’istruzione, alla sanità , alla GDO e ad altri indicatori di performance economica. I dati provengono da OCSE, CSO, banca mondiale e ONU.
Il dataset House Demolition Palestine.csv scaricabile da qui : https://statistics.btselem.org/en/intro/demolitions fornisce informazioni sulla demolizione delle case in Palestina dal 2004 al 2023. Israele demolisce le case per tre ragioni principali: per motivi di costruzione illegale, per scopi militari e come punizione. Molto spesso le vittime sono civili innocui e minori. Questo set di dati è un tentativo di documentare il calvario.
Il dataset fatalities_isr_pse_conflict_2000_to_2023.csv scaricabile da qui: https://statistics.btselem.org/en/intro/fatalities e da Kaggle qui : https://www.kaggle.com/datasets/willianoliveiragibin/fatalities-in-the-israeli-palestinian/data fornisce informazioni sulle persone uccise durante il conflitto israelo-palestinese a partire dalla seconda intifada, iniziata in ottobre 2000. I dati sono stati meticolosamente raccolti e analizzati da B’Tselem – Centro di informazione israeliano per i diritti umani nei territori occupati. Il set di dati include statistiche su tutti gli esseri umani – palestinesi, israeliani e cittadini stranieri – che hanno perso la vita durante questo conflitto. Fornisce dettagli come nome, età , cittadinanza, data di morte, sesso, partecipazione alle ostilità , luogo di residenza, tipo di ferita, munizioni utilizzate e altro ancora.
Caricamento dati:
Israel.Palestine <- read.csv("Israel-Palestine.csv")
fatalities_isr_pse_conflict_2000_to_2023 <- read.csv("fatalities_isr_pse_conflict_2000_to_2023.csv")
House.Demolition.Palestine <- read.csv("House Demolition Palestine.csv")
commons.wikimedia.org
range(Israel.Palestine$Year)
## [1] 2000 2021
Israel.Palestine$Population <- as.integer( str_replace_all(Israel.Palestine$Population,",",""))
Israel.Palestine %>%
ggplot(aes(Year,Population/1000000, colour=Country))+
geom_line()+
geom_point()+
scale_x_continuous(breaks=seq(2000,2021,2))+
scale_y_continuous(breaks=seq(3,10,1))+
theme(axis.text.x = element_text(angle=45,hjust=1))+
ylab("Popolazione") +
xlab("Anno") +
ggtitle("Populazione in milioni dal 2000 al 2021")
Israel.Palestine %>%
ggplot(aes(Year,GDP.Growth.Rate...., colour=Country))+
geom_line()+
geom_point()+
scale_x_continuous(breaks=seq(2000,2021,2))+
scale_y_continuous(breaks=seq(-50,10,10))+
theme(axis.text.x = element_text(angle=45,hjust=1))+
ylab("Tasso di crescita del PIL") +
xlab("Anno") +
ggtitle("Tasso di crescita del PIL dal 2000 al 2021")
Israel.Palestine$GDP..in.USD. <- as.numeric(str_replace_all(Israel.Palestine$GDP..in.USD.," billion",""))
Israel.Palestine %>%
ggplot(aes(Year,GDP..in.USD., colour=Country))+
geom_line()+
geom_point()+
scale_x_continuous(breaks=seq(2000,2021,2))+
#scale_y_continuous(breaks=seq(-50,10,10))+
theme(axis.text.x = element_text(angle=45,hjust=1))+
ylab("PIL in miliardi") +
xlab("Year") +
ggtitle("PIL in miliardi di dollari dal 2000 al 2021")
Israel.Palestine %>%
ggplot(aes(Year,Infant.Mortality.Rate..per.1.000.live.births., colour=Country))+
geom_line()+
geom_point()+
scale_x_continuous(breaks=seq(2000,2021,2))+
#scale_y_continuous(breaks=seq(-50,10,10))+
theme(axis.text.x = element_text(angle=45,hjust=1))+
ylab("Tasso di mortalità infantile") +
xlab("Year") +
ggtitle("Tasso di mortalità infantile", subtitle = "per 1000 nascite dal 2000 al 2021")
Israel.Palestine %>%
ggplot(aes(Year,Maternal.Mortality.Rate..per.100.000.live.births., colour=Country))+
geom_line()+
geom_point()+
scale_x_continuous(breaks=seq(2000,2021,2))+
#scale_y_continuous(breaks=seq(-50,10,10))+
theme(axis.text.x = element_text(angle=45,hjust=1))+
ylab("Tasso di mortalità materno") +
xlab("Year") +
ggtitle("Tasso di mortalità materno", subtitle = "per 100000 nascite dal 2000 al 2021")
range(House.Demolition.Palestine$Year)
## [1] 2004 2023
df<-House.Demolition.Palestine %>%
summarise(Total_demolitions=sum(Units),People_left_homeless=sum(People.left.homeless),Minors_left_homeless=sum(Minors.left.homeless))
df <- melt(df)
## No id variables; using all as measure variables
df %>%
ggplot(aes(variable,value, fill=variable))+
geom_bar(stat = "identity")+
coord_flip()+
ylim(0,26000)+
geom_text(aes(label=value), hjust=0, size=3)+
guides(fill="none")+
ggtitle("Totali generali sulle demolizioni", subtitle = "dal 2004 al 2023")
House.Demolition.Palestine %>%
group_by(Category) %>%
summarise(total=sum(Units)) %>%
ggplot(aes(Category,total))+
geom_bar(stat = "identity",fill="red")+
geom_text(aes(label=total), hjust=0, size=3)+
coord_flip()+
ylim(0,8000)+
ggtitle("Numero di case demolite", subtitle = "in modo parziale o completo dal 2004 al 2023")
House.Demolition.Palestine %>%
ggplot(aes(Year,Units, fill=Category))+
geom_bar(stat = "identity")+
scale_x_continuous(breaks=seq(2004,2023,2))+
theme(legend.position = "bottom", legend.direction = "vertical")+
theme(axis.text.x = element_text(angle=45,hjust=1))+
ggtitle("Numero demolizioni per categoria")
House.Demolition.Palestine %>%
group_by(Category) %>%
summarise(total=sum(People.left.homeless)) %>%
ggplot(aes(Category,total))+
geom_bar(stat = "identity",fill="blue")+
geom_text(aes(label=total), hjust=0, size=3)+
coord_flip()+
ylim(0,20000)+
ggtitle("Numero di persone senza casa", subtitle = "dal 2004 al 2023")
House.Demolition.Palestine %>%
ggplot(aes(Year,People.left.homeless, fill=Category))+
geom_bar(stat = "identity")+
scale_x_continuous(breaks=seq(2004,2023,2))+
theme(legend.position = "bottom", legend.direction = "vertical")+
theme(axis.text.x = element_text(angle=45,hjust=1))+
ggtitle("Numero persone senza casa per categoria")
House.Demolition.Palestine %>%
group_by(Category) %>%
summarise(total=sum(Minors.left.homeless)) %>%
ggplot(aes(Category,total))+
geom_bar(stat = "identity",fill="orange")+
geom_text(aes(label=total), hjust=0, size=3)+
coord_flip()+
ylim(0,6000)+
ggtitle("Numero di minori senza casa", subtitle = "dal 2004 al 2023")
House.Demolition.Palestine %>%
ggplot(aes(Year,Minors.left.homeless, fill=Category))+
geom_bar(stat = "identity")+
scale_x_continuous(breaks=seq(2004,2023,2))+
theme(legend.position = "bottom", legend.direction = "vertical")+
theme(axis.text.x = element_text(angle=45,hjust=1))+
ggtitle("Numero minori senza casa per categoria")
fatalities_isr_pse_conflict_2000_to_2023$date_of_event<- as.Date(fatalities_isr_pse_conflict_2000_to_2023$date_of_event)
range(fatalities_isr_pse_conflict_2000_to_2023$date_of_event)
## [1] "2000-10-02" "2023-09-24"
fatalities_isr_pse_conflict_2000_to_2023 %>%
group_by(citizenship) %>%
summarise(mean_age= mean(age, na.rm = TRUE))
## # A tibble: 4 × 2
## citizenship mean_age
## <chr> <dbl>
## 1 American 16
## 2 Israeli 35.9
## 3 Jordanian 33
## 4 Palestinian 25.8
fatalities_isr_pse_conflict_2000_to_2023 %>%
group_by(citizenship) %>%
summarise(total=n()) %>%
ggplot(aes(citizenship,total, fill=citizenship))+
geom_bar(stat = "identity")+
geom_text(aes(label=total), hjust=0, size=3)+
coord_flip()+
ylim(0,12000)+
ggtitle("Numero di persone uccise per cittadinanza", subtitle = "dal 2000-10-02 al 2023-09-24")
df<-fatalities_isr_pse_conflict_2000_to_2023 %>%
group_by(citizenship) %>%
summarise(perc=round(n()*100/nrow(fatalities_isr_pse_conflict_2000_to_2023),2))
df %>%
filter(citizenship %in% c("Israeli","Palestinian")) %>%
ggplot(aes(x="", y=perc, fill=citizenship))+
geom_col(color="black")+
theme_void()+
geom_text(aes(y=perc, label=paste(perc,"%", sep = "")), position= position_stack(vjust=0.5), size=2.5)+
coord_polar(theta = "y")+
ggtitle("Percentuale persone uccise per cittadinanza", subtitle = "dal 2000-10-02 al 2023-09-24")
fatalities_isr_pse_conflict_2000_to_2023$year <- as.integer( str_sub(fatalities_isr_pse_conflict_2000_to_2023$date_of_event, end = 4))
fatalities_isr_pse_conflict_2000_to_2023 %>%
group_by(year,citizenship) %>%
summarise(total=n(), .groups = "keep") %>%
ggplot(aes(year,total, fill=citizenship)) +
geom_bar(stat = "identity")+
scale_x_continuous(breaks=seq(2000,2023,2))+
#scale_y_continuous(breaks=seq(-50,10,10))+
theme(axis.text.x = element_text(angle=45,hjust=1))+
ggtitle("Numero persone uccise", subtitle = "dal 2000-10-02 al 2023-09-24")
fatalities_isr_pse_conflict_2000_to_2023 %>%
group_by(year,event_location_region) %>%
summarise(total=n(), .groups = "keep") %>%
ggplot(aes(year,total, fill=event_location_region)) +
geom_bar(stat = "identity")+
scale_x_continuous(breaks=seq(2000,2023,2))+
#scale_y_continuous(breaks=seq(-50,10,10))+
theme(axis.text.x = element_text(angle=45,hjust=1))+
ggtitle("Numero persone uccise", subtitle = "dal 2000-10-02 al 2023-09-24")
fatalities_isr_pse_conflict_2000_to_2023 %>%
group_by(year,killed_by) %>%
summarise(total=n(), .groups = "keep") %>%
ggplot(aes(year,total, fill=killed_by)) +
geom_bar(stat = "identity")+
scale_x_continuous(breaks=seq(2000,2023,2))+
#scale_y_continuous(breaks=seq(-50,10,10))+
theme(axis.text.x = element_text(angle=45,hjust=1))+
ggtitle("Numero persone uccise", subtitle = "dal 2000-10-02 al 2023-09-24")
fatalities_isr_pse_conflict_2000_to_2023 %>%
filter(took_part_in_the_hostilities!="", citizenship %in% c("Israeli","Palestinian")) %>%
group_by(citizenship, took_part_in_the_hostilities) %>%
summarise(total=n(), .groups = "keep") %>%
ggplot(aes(took_part_in_the_hostilities,total, fill=citizenship))+
geom_bar(stat = "identity")+
theme(axis.text.x = element_text(angle=45,hjust=1))+
geom_text(aes(label=total), vjust=0, size=3)+
#coord_flip()
ylim(0,5000)+
ggtitle("Numero persone uccise", subtitle = "dal 2000-10-02 al 2023-09-24")