setwd("~/Downloads")
datos<-read.table("bdcedro10.csv", header=T, sep=',')
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.2
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df2 <- datos %>%
group_by(Finca) %>%
arrange(Finca, desc(Tejido))
df2
## # A tibble: 60 × 6
## # Groups: Finca [10]
## Finca finca cultivo Tejido genotipo cadmio
## <chr> <chr> <chr> <chr> <chr> <dbl>
## 1 F13 El Porvenir Cedro Tallos Cedro 0.151
## 2 F13 El Porvenir Cedro Tallos Cedro 0.142
## 3 F13 El Porvenir Cedro Tallos Cedro 0.163
## 4 F13 El Porvenir Cedro Hojas Cedro 0.085
## 5 F13 El Porvenir Cedro Hojas Cedro 0.082
## 6 F13 El Porvenir Cedro Hojas Cedro 0.065
## 7 F14 La Loma Cedro Tallos Cedro 0.079
## 8 F14 La Loma Cedro Tallos Cedro 0.091
## 9 F14 La Loma Cedro Tallos Cedro 0.12
## 10 F14 La Loma Cedro Hojas Cedro 0.085
## # ℹ 50 more rows
df3<-df2%>%
group_by(Finca, cultivo, Tejido) %>%
summarise(mean = round(mean(cadmio), 2))
## `summarise()` has grouped output by 'Finca', 'cultivo'. You can override using
## the `.groups` argument.
df4<-df3%>%
mutate(lab_ypos = cumsum(mean) - 0.3 * mean)
p <- ggplot(data = df4, aes(x = Finca, y = mean)) +
geom_col(aes(fill = Tejido), width = 0.7)+
geom_text(aes(y = lab_ypos, label = mean, group =Tejido), color = "white")
p

library(emmeans)
fit1<-aov(mean~Finca, data=df4)
meandiam<-emmeans(fit1, ~ Finca)
multcomp::cld(meandiam, adjust="none", Letters=LETTERS, reversed=T)
## Finca emmean SE df lower.CL upper.CL .group
## F9 1.015 0.0917 10 0.8108 1.219 A
## F8 0.760 0.0917 10 0.5558 0.964 A
## F18 0.460 0.0917 10 0.2558 0.664 B
## F16 0.420 0.0917 10 0.2158 0.624 BC
## F24 0.300 0.0917 10 0.0958 0.504 BCD
## F22 0.145 0.0917 10 -0.0592 0.349 CD
## F19 0.135 0.0917 10 -0.0692 0.339 CD
## F13 0.115 0.0917 10 -0.0892 0.319 D
## F14 0.085 0.0917 10 -0.1192 0.289 D
## F7 0.080 0.0917 10 -0.1242 0.284 D
##
## Confidence level used: 0.95
## significance level used: alpha = 0.05
## NOTE: Compact letter displays can be misleading
## because they show NON-findings rather than findings.
## Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
plot(meandiam, comparisons = TRUE)
