# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks. (AAPL, ROKU, CL=F)
from 2012-12-31 to 2017-12-31
# Choose stocks
symbols <- c("AAPL", "ROKU", "CL=F")
# Using tq_get() ----
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice (-1) %>%
ungroup() %>%
# rename
set_names(c("asset", "date", "returns"))
# period_returns = c("yearly", "quarterly", "monthly", "weekly")
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.45,
0.35,
0.20)
w_tbl <- tibble(symbols, w)
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.0490
## 2 2013-02-28 -0.0316
## 3 2013-03-28 0.0204
## 4 2013-04-30 -0.0137
## 5 2013-05-31 0.00435
## 6 2013-06-28 -0.0396
## 7 2013-07-31 0.0889
## 8 2013-08-30 0.0448
## 9 2013-09-30 -0.0275
## 10 2013-10-31 0.0204
## # ℹ 50 more rows
portfolio_returns_tbl %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(Skewness)
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 0.416
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 4 × 2
## asset skew
## <chr> <dbl>
## 1 AAPL -0.555
## 2 CL=F -0.244
## 3 ROKU 0.202
## 4 Portfolio 0.415
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
Based on the skewness graph, none of my assets are more likely to return extreme positive returns than my portfolio collectively. as a matter of fact, Apple is more likely to return very negative returns compared to my portfolio, which I found interesting. My portfolio as one has the highest skewness, and Roku is the only one of my three stocks that has a positive skewness.