R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

library(dslabs)

Including Plots

You can also embed plots, for example:

data(murders)

#q1:Use the $ operator to access the population size data and store it as the object pop. Then use the sort function to redefine pop so that it is sorted. Finally, use the [ operator to report the smallest population size.

pop<-murders$population
pop
##  [1]  4779736   710231  6392017  2915918 37253956  5029196  3574097   897934
##  [9]   601723 19687653  9920000  1360301  1567582 12830632  6483802  3046355
## [17]  2853118  4339367  4533372  1328361  5773552  6547629  9883640  5303925
## [25]  2967297  5988927   989415  1826341  2700551  1316470  8791894  2059179
## [33] 19378102  9535483   672591 11536504  3751351  3831074 12702379  1052567
## [41]  4625364   814180  6346105 25145561  2763885   625741  8001024  6724540
## [49]  1852994  5686986   563626
sort(pop)
##  [1]   563626   601723   625741   672591   710231   814180   897934   989415
##  [9]  1052567  1316470  1328361  1360301  1567582  1826341  1852994  2059179
## [17]  2700551  2763885  2853118  2915918  2967297  3046355  3574097  3751351
## [25]  3831074  4339367  4533372  4625364  4779736  5029196  5303925  5686986
## [33]  5773552  5988927  6346105  6392017  6483802  6547629  6724540  8001024
## [41]  8791894  9535483  9883640  9920000 11536504 12702379 12830632 19378102
## [49] 19687653 25145561 37253956
murders$population[which.min(pop)]
## [1] 563626
min(murders$population)
## [1] 563626

#q2:Now instead of the smallest population size, find the index of the entry with the smallest population size.

order(murders$population)
##  [1] 51  9 46 35  2 42  8 27 40 30 20 12 13 28 49 32 29 45 17  4 25 16  7 37 38
## [26] 18 19 41  1  6 24 50 21 26 43  3 15 22 48 47 31 34 23 11 36 39 14 33 10 44
## [51]  5

#q3:We can actually perform the same operation as in the previous exercise using the function which.min. Write one line of code that does this.

murders$population[which.min(pop)]
## [1] 563626

#q4:Now we know how small the smallest state is and we know which row represents it. Which state is it? Define a variable states to be the state names from the murders data frame. Report the name of the state with the smallest population.

state<-murders$state
state
##  [1] "Alabama"              "Alaska"               "Arizona"             
##  [4] "Arkansas"             "California"           "Colorado"            
##  [7] "Connecticut"          "Delaware"             "District of Columbia"
## [10] "Florida"              "Georgia"              "Hawaii"              
## [13] "Idaho"                "Illinois"             "Indiana"             
## [16] "Iowa"                 "Kansas"               "Kentucky"            
## [19] "Louisiana"            "Maine"                "Maryland"            
## [22] "Massachusetts"        "Michigan"             "Minnesota"           
## [25] "Mississippi"          "Missouri"             "Montana"             
## [28] "Nebraska"             "Nevada"               "New Hampshire"       
## [31] "New Jersey"           "New Mexico"           "New York"            
## [34] "North Carolina"       "North Dakota"         "Ohio"                
## [37] "Oklahoma"             "Oregon"               "Pennsylvania"        
## [40] "Rhode Island"         "South Carolina"       "South Dakota"        
## [43] "Tennessee"            "Texas"                "Utah"                
## [46] "Vermont"              "Virginia"             "Washington"          
## [49] "West Virginia"        "Wisconsin"            "Wyoming"
murders$state[which.min(murders$population)]
## [1] "Wyoming"

#q5:You can create a data frame using the data.frame function.

temp <- c(35, 88, 42, 84, 81, 30)
city <- c("Beijing", "Lagos", "Paris", "Rio de Janeiro", "San Juan", "Toronto")
city_temps <- data.frame(name = city, temperature = temp)
city_temps
##             name temperature
## 1        Beijing          35
## 2          Lagos          88
## 3          Paris          42
## 4 Rio de Janeiro          84
## 5       San Juan          81
## 6        Toronto          30
population<-murders$population
population
##  [1]  4779736   710231  6392017  2915918 37253956  5029196  3574097   897934
##  [9]   601723 19687653  9920000  1360301  1567582 12830632  6483802  3046355
## [17]  2853118  4339367  4533372  1328361  5773552  6547629  9883640  5303925
## [25]  2967297  5988927   989415  1826341  2700551  1316470  8791894  2059179
## [33] 19378102  9535483   672591 11536504  3751351  3831074 12702379  1052567
## [41]  4625364   814180  6346105 25145561  2763885   625741  8001024  6724540
## [49]  1852994  5686986   563626
states<-murders$state
states
##  [1] "Alabama"              "Alaska"               "Arizona"             
##  [4] "Arkansas"             "California"           "Colorado"            
##  [7] "Connecticut"          "Delaware"             "District of Columbia"
## [10] "Florida"              "Georgia"              "Hawaii"              
## [13] "Idaho"                "Illinois"             "Indiana"             
## [16] "Iowa"                 "Kansas"               "Kentucky"            
## [19] "Louisiana"            "Maine"                "Maryland"            
## [22] "Massachusetts"        "Michigan"             "Minnesota"           
## [25] "Mississippi"          "Missouri"             "Montana"             
## [28] "Nebraska"             "Nevada"               "New Hampshire"       
## [31] "New Jersey"           "New Mexico"           "New York"            
## [34] "North Carolina"       "North Dakota"         "Ohio"                
## [37] "Oklahoma"             "Oregon"               "Pennsylvania"        
## [40] "Rhode Island"         "South Carolina"       "South Dakota"        
## [43] "Tennessee"            "Texas"                "Utah"                
## [46] "Vermont"              "Virginia"             "Washington"          
## [49] "West Virginia"        "Wisconsin"            "Wyoming"
ranks <- rank(murders$population)
ranks
##  [1] 29  5 36 20 51 30 23  7  2 49 44 12 13 47 37 22 19 26 27 11 33 38 43 31 21
## [26] 34  8 14 17 10 41 16 48 42  4 45 24 25 46  9 28  6 35 50 18  3 40 39 15 32
## [51]  1
my_df <- data.frame(name=state, ranks)
my_df
##                    name ranks
## 1               Alabama    29
## 2                Alaska     5
## 3               Arizona    36
## 4              Arkansas    20
## 5            California    51
## 6              Colorado    30
## 7           Connecticut    23
## 8              Delaware     7
## 9  District of Columbia     2
## 10              Florida    49
## 11              Georgia    44
## 12               Hawaii    12
## 13                Idaho    13
## 14             Illinois    47
## 15              Indiana    37
## 16                 Iowa    22
## 17               Kansas    19
## 18             Kentucky    26
## 19            Louisiana    27
## 20                Maine    11
## 21             Maryland    33
## 22        Massachusetts    38
## 23             Michigan    43
## 24            Minnesota    31
## 25          Mississippi    21
## 26             Missouri    34
## 27              Montana     8
## 28             Nebraska    14
## 29               Nevada    17
## 30        New Hampshire    10
## 31           New Jersey    41
## 32           New Mexico    16
## 33             New York    48
## 34       North Carolina    42
## 35         North Dakota     4
## 36                 Ohio    45
## 37             Oklahoma    24
## 38               Oregon    25
## 39         Pennsylvania    46
## 40         Rhode Island     9
## 41       South Carolina    28
## 42         South Dakota     6
## 43            Tennessee    35
## 44                Texas    50
## 45                 Utah    18
## 46              Vermont     3
## 47             Virginia    40
## 48           Washington    39
## 49        West Virginia    15
## 50            Wisconsin    32
## 51              Wyoming     1

#q6:Repeat the previous exercise, but this time order my_df so that the states are ordered from least populous to most populous. Hint: create an object ind that stores the indexes needed to order the population values. Then use the bracket operator [ to re-order each column in the data frame.

state<-(murders$population)
state
##  [1]  4779736   710231  6392017  2915918 37253956  5029196  3574097   897934
##  [9]   601723 19687653  9920000  1360301  1567582 12830632  6483802  3046355
## [17]  2853118  4339367  4533372  1328361  5773552  6547629  9883640  5303925
## [25]  2967297  5988927   989415  1826341  2700551  1316470  8791894  2059179
## [33] 19378102  9535483   672591 11536504  3751351  3831074 12702379  1052567
## [41]  4625364   814180  6346105 25145561  2763885   625741  8001024  6724540
## [49]  1852994  5686986   563626
rank<-rank(murders$population)
rank
##  [1] 29  5 36 20 51 30 23  7  2 49 44 12 13 47 37 22 19 26 27 11 33 38 43 31 21
## [26] 34  8 14 17 10 41 16 48 42  4 45 24 25 46  9 28  6 35 50 18  3 40 39 15 32
## [51]  1
ind<-order(murders$population)
ind
##  [1] 51  9 46 35  2 42  8 27 40 30 20 12 13 28 49 32 29 45 17  4 25 16  7 37 38
## [26] 18 19 41  1  6 24 50 21 26 43  3 15 22 48 47 31 34 23 11 36 39 14 33 10 44
## [51]  5
my_df<-data.frame(state=state[ind],rank=rank[ind])
my_df
##       state rank
## 1    563626    1
## 2    601723    2
## 3    625741    3
## 4    672591    4
## 5    710231    5
## 6    814180    6
## 7    897934    7
## 8    989415    8
## 9   1052567    9
## 10  1316470   10
## 11  1328361   11
## 12  1360301   12
## 13  1567582   13
## 14  1826341   14
## 15  1852994   15
## 16  2059179   16
## 17  2700551   17
## 18  2763885   18
## 19  2853118   19
## 20  2915918   20
## 21  2967297   21
## 22  3046355   22
## 23  3574097   23
## 24  3751351   24
## 25  3831074   25
## 26  4339367   26
## 27  4533372   27
## 28  4625364   28
## 29  4779736   29
## 30  5029196   30
## 31  5303925   31
## 32  5686986   32
## 33  5773552   33
## 34  5988927   34
## 35  6346105   35
## 36  6392017   36
## 37  6483802   37
## 38  6547629   38
## 39  6724540   39
## 40  8001024   40
## 41  8791894   41
## 42  9535483   42
## 43  9883640   43
## 44  9920000   44
## 45 11536504   45
## 46 12702379   46
## 47 12830632   47
## 48 19378102   48
## 49 19687653   49
## 50 25145561   50
## 51 37253956   51

#q7:he na_example vector represents a series of counts

data("na_example")
str(na_example)
##  int [1:1000] 2 1 3 2 1 3 1 4 3 2 ...

#However, when we compute the average with the function mean, we obtain an NA:

mean(na_example)
## [1] NA
index<-is.na(na_example)
index
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [13] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##   [61] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [157] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [169]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [205]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [241]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265]  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [289] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [397]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [409] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [445] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [469] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [493] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [577] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [601] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
##  [637] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##  [697] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
##  [757] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [829] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [841] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [853]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [889] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [925]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE  TRUE FALSE
num_NAs<-sum(ind)
num_NAs
## [1] 1326

#q8:Now compute the average again, but only for the entries that are not NA. Hint: remember the !operator.

mean(na_example[!ind])
## [1] NaN

#q9:Previously we created this data frame:

temp <- c(35, 88, 42, 84, 81, 30)
city <- c("Beijing", "Lagos", "Paris", "Rio de Janeiro", "San Juan", "Toronto")
city_temps <- data.frame(name = city, temperature = temp)
city_temps
##             name temperature
## 1        Beijing          35
## 2          Lagos          88
## 3          Paris          42
## 4 Rio de Janeiro          84
## 5       San Juan          81
## 6        Toronto          30
temp<-5/9*(temp-32)
temp
## [1]  1.666667 31.111111  5.555556 28.888889 27.222222 -1.111111

#q10:What is the following sum 1 + 1/22 + 1/32 + . . . 1/1002? Hint: thanks to Euler, we know it should be close to π2/6.

x<-c(1:1000)
x
##    [1]    1    2    3    4    5    6    7    8    9   10   11   12   13   14
##   [15]   15   16   17   18   19   20   21   22   23   24   25   26   27   28
##   [29]   29   30   31   32   33   34   35   36   37   38   39   40   41   42
##   [43]   43   44   45   46   47   48   49   50   51   52   53   54   55   56
##   [57]   57   58   59   60   61   62   63   64   65   66   67   68   69   70
##   [71]   71   72   73   74   75   76   77   78   79   80   81   82   83   84
##   [85]   85   86   87   88   89   90   91   92   93   94   95   96   97   98
##   [99]   99  100  101  102  103  104  105  106  107  108  109  110  111  112
##  [113]  113  114  115  116  117  118  119  120  121  122  123  124  125  126
##  [127]  127  128  129  130  131  132  133  134  135  136  137  138  139  140
##  [141]  141  142  143  144  145  146  147  148  149  150  151  152  153  154
##  [155]  155  156  157  158  159  160  161  162  163  164  165  166  167  168
##  [169]  169  170  171  172  173  174  175  176  177  178  179  180  181  182
##  [183]  183  184  185  186  187  188  189  190  191  192  193  194  195  196
##  [197]  197  198  199  200  201  202  203  204  205  206  207  208  209  210
##  [211]  211  212  213  214  215  216  217  218  219  220  221  222  223  224
##  [225]  225  226  227  228  229  230  231  232  233  234  235  236  237  238
##  [239]  239  240  241  242  243  244  245  246  247  248  249  250  251  252
##  [253]  253  254  255  256  257  258  259  260  261  262  263  264  265  266
##  [267]  267  268  269  270  271  272  273  274  275  276  277  278  279  280
##  [281]  281  282  283  284  285  286  287  288  289  290  291  292  293  294
##  [295]  295  296  297  298  299  300  301  302  303  304  305  306  307  308
##  [309]  309  310  311  312  313  314  315  316  317  318  319  320  321  322
##  [323]  323  324  325  326  327  328  329  330  331  332  333  334  335  336
##  [337]  337  338  339  340  341  342  343  344  345  346  347  348  349  350
##  [351]  351  352  353  354  355  356  357  358  359  360  361  362  363  364
##  [365]  365  366  367  368  369  370  371  372  373  374  375  376  377  378
##  [379]  379  380  381  382  383  384  385  386  387  388  389  390  391  392
##  [393]  393  394  395  396  397  398  399  400  401  402  403  404  405  406
##  [407]  407  408  409  410  411  412  413  414  415  416  417  418  419  420
##  [421]  421  422  423  424  425  426  427  428  429  430  431  432  433  434
##  [435]  435  436  437  438  439  440  441  442  443  444  445  446  447  448
##  [449]  449  450  451  452  453  454  455  456  457  458  459  460  461  462
##  [463]  463  464  465  466  467  468  469  470  471  472  473  474  475  476
##  [477]  477  478  479  480  481  482  483  484  485  486  487  488  489  490
##  [491]  491  492  493  494  495  496  497  498  499  500  501  502  503  504
##  [505]  505  506  507  508  509  510  511  512  513  514  515  516  517  518
##  [519]  519  520  521  522  523  524  525  526  527  528  529  530  531  532
##  [533]  533  534  535  536  537  538  539  540  541  542  543  544  545  546
##  [547]  547  548  549  550  551  552  553  554  555  556  557  558  559  560
##  [561]  561  562  563  564  565  566  567  568  569  570  571  572  573  574
##  [575]  575  576  577  578  579  580  581  582  583  584  585  586  587  588
##  [589]  589  590  591  592  593  594  595  596  597  598  599  600  601  602
##  [603]  603  604  605  606  607  608  609  610  611  612  613  614  615  616
##  [617]  617  618  619  620  621  622  623  624  625  626  627  628  629  630
##  [631]  631  632  633  634  635  636  637  638  639  640  641  642  643  644
##  [645]  645  646  647  648  649  650  651  652  653  654  655  656  657  658
##  [659]  659  660  661  662  663  664  665  666  667  668  669  670  671  672
##  [673]  673  674  675  676  677  678  679  680  681  682  683  684  685  686
##  [687]  687  688  689  690  691  692  693  694  695  696  697  698  699  700
##  [701]  701  702  703  704  705  706  707  708  709  710  711  712  713  714
##  [715]  715  716  717  718  719  720  721  722  723  724  725  726  727  728
##  [729]  729  730  731  732  733  734  735  736  737  738  739  740  741  742
##  [743]  743  744  745  746  747  748  749  750  751  752  753  754  755  756
##  [757]  757  758  759  760  761  762  763  764  765  766  767  768  769  770
##  [771]  771  772  773  774  775  776  777  778  779  780  781  782  783  784
##  [785]  785  786  787  788  789  790  791  792  793  794  795  796  797  798
##  [799]  799  800  801  802  803  804  805  806  807  808  809  810  811  812
##  [813]  813  814  815  816  817  818  819  820  821  822  823  824  825  826
##  [827]  827  828  829  830  831  832  833  834  835  836  837  838  839  840
##  [841]  841  842  843  844  845  846  847  848  849  850  851  852  853  854
##  [855]  855  856  857  858  859  860  861  862  863  864  865  866  867  868
##  [869]  869  870  871  872  873  874  875  876  877  878  879  880  881  882
##  [883]  883  884  885  886  887  888  889  890  891  892  893  894  895  896
##  [897]  897  898  899  900  901  902  903  904  905  906  907  908  909  910
##  [911]  911  912  913  914  915  916  917  918  919  920  921  922  923  924
##  [925]  925  926  927  928  929  930  931  932  933  934  935  936  937  938
##  [939]  939  940  941  942  943  944  945  946  947  948  949  950  951  952
##  [953]  953  954  955  956  957  958  959  960  961  962  963  964  965  966
##  [967]  967  968  969  970  971  972  973  974  975  976  977  978  979  980
##  [981]  981  982  983  984  985  986  987  988  989  990  991  992  993  994
##  [995]  995  996  997  998  999 1000
sum(1/x^2)
## [1] 1.643935

#11:ompute the per 100,000 murder rate for each state and store it in the object murder_rate. Then compute the average murder rate for the US using the function mean. What is the average?

murder_rate<-murders$total/murders$population *100000
murder_rate
##  [1]  2.8244238  2.6751860  3.6295273  3.1893901  3.3741383  1.2924531
##  [7]  2.7139722  4.2319369 16.4527532  3.3980688  3.7903226  0.5145920
## [13]  0.7655102  2.8369608  2.1900730  0.6893484  2.2081106  2.6732010
## [19]  7.7425810  0.8280881  5.0748655  1.8021791  4.1786225  0.9992600
## [25]  4.0440846  5.3598917  1.2128379  1.7521372  3.1104763  0.3798036
## [31]  2.7980319  3.2537239  2.6679599  2.9993237  0.5947151  2.6871225
## [37]  2.9589340  0.9396843  3.5977513  1.5200933  4.4753235  0.9825837
## [43]  3.4509357  3.2013603  0.7959810  0.3196211  3.1246001  1.3829942
## [49]  1.4571013  1.7056487  0.8871131
mean(murder_rate)
## [1] 2.779125

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.