library(UsingR)
## Loading required package: MASS
## Loading required package: HistData
## Loading required package: Hmisc
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library(ggplot2)

# PUNTO 2.1, PAQUETE USINGR:
# PUNTO A) CONJUNTO DE DATOS DEL PAQUETE:
data(package="UsingR")
packageDescription("UsingR")
## Package: UsingR
## Version: 2.0-7
## Title: Data Sets, Etc. for the Text "Using R for Introductory
##         Statistics", Second Edition
## Author: John Verzani <verzani@math.csi.cuny.edu>
## Maintainer: John Verzani <verzani@math.csi.cuny.edu>
## Description: A collection of data sets to accompany the textbook "Using
##         R for Introductory Statistics," second edition.
## Depends: R (>= 2.15.0), MASS, HistData, Hmisc
## Suggests: zoo, ggplot2, vcd, lubridate, aplpack
## License: GPL (>= 2)
## LazyData: TRUE
## NeedsCompilation: no
## Packaged: 2022-01-10 19:16:26 UTC; jverzani
## Repository: CRAN
## Date/Publication: 2022-01-11 09:52:45 UTC
## Built: R 4.3.0; ; 2023-07-10 06:52:20 UTC; unix
## 
## -- File: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/UsingR/Meta/package.rds
data()
data(package=.packages(all.available = TRUE))
length(ls("package:UsingR"))
## [1] 150
# PUNTO B) REPRESENTACION GRAFICA, DATASETS:
data("bumpers")
hist(bumpers, main="REPRESENTACION GRAFICA DATASETS", ylab = "FRECUENCIA", xlab= "BUMPERS", las=1, col= c("thistle1", "pink1"))

boxplot(bumpers, main="REPRESENTACION GRAFICA DATASETS", xlab="BUMPERS", las=1, col= c("lightsteelblue1"))

data("firstchi")
hist(firstchi, main="REPRESENTACION GRAFICA DATASETS", ylab = "FRECUENCIA", xlab= "FIRSTCHI", las=1, col= c("violet", "aquamarine1"))

boxplot(firstchi, main="REPRESENTACION GRAFICA DATASETS", xlab="FIRSTCHI", las=1, col= c("slateblue1"))

data("math")
hist(math, main="REPRESENTACION GRAFICA DATASETS", ylab = "FRECUENCIA", xlab= "MATH", las=1, col= c("turquoise1", "steelblue1"))

boxplot(math, main="REPRESENTACION GRAFICA DATASETS", xlab="MATH", las=1, col= c("salmon1"))

# PUNTO C) MEDIA, MEDIANA Y DESVIACION ESTANDAR:
media_C= mean(bumpers)
mediana_c= median(bumpers)
desviacion_c= sd(bumpers)
media_C
## [1] 2122.478
mediana_c
## [1] 2129
desviacion_c
## [1] 798.4574
media_c1= mean(firstchi)
mediana_c2= median(firstchi)
desviacion_c3=sd(firstchi)
media_c1
## [1] 23.97701
mediana_c2
## [1] 23
desviacion_c3
## [1] 6.254258
media_c1.1= mean(math)
mediana_c2.1= median(math)
desviacion_c3.1= sd(math)
media_c1.1
## [1] 54.9
mediana_c2.1
## [1] 54
desviacion_c3.1
## [1] 9.746264
# PUNTO 2.2, DATOS BRIGHTNESS:
# PUNTO A) HISTOGRAMA Y GRAFICO DENSIDAD:
hist(brightness, probability = TRUE)
lines(density(brightness), col="lightgoldenrod1", lwd=3)

# PUNTO B) DIAGRAMA DE CAJA:
boxplot(brightness, main="REPRESENTACION GRAFICA BRIGHTNESS", xlab="BRIGHTNESS", las=1, col= c("salmon1"))

data("brightness")
hist(brightness, main="REPRESENTACION GRAFICA BRIGHTNESS", xlab= "BRIGHTNESS", las=1, col= c("turquoise1", "steelblue1"))

min(brightness[brightness > min(brightness)])
## [1] 2.28
# PUNTO C) VARIABLE BRIGHTNESS.SIN:
# QUANTILE, BISAGRAS INFERIOR Y SUPERIOR:
# 1 BISAGRA (Q1) 7.7025, 3 BISAGRA (Q3) 9.1300
boxplot(brightness, main="REPRESENTACION GRAFICA BRIGHTNESS", xlab="BRIGHTNESS", las=1, col= c("violet"))

quantile(brightness)
##      0%     25%     50%     75%    100% 
##  2.0700  7.7025  8.5000  9.1300 12.4300
brightness.sin <- brightness[brightness > 7.702 & brightness < 9.130]
boxplot(brightness.sin, main="REPRESENTACION GRAFICA BRIGHTNESS", xlab="BRIGHTNESS", las=1, col=c("lightsteelblue1"))

# PUNTO 2.3, DATOS UScereaL:
# PUNTO A) TIPO DE DATOS DE CADA VARIABLE:
class(UScereal[,1])
## [1] "factor"
data("UScereal")
str(UScereal)
## 'data.frame':    65 obs. of  11 variables:
##  $ mfr      : Factor w/ 6 levels "G","K","N","P",..: 3 2 2 1 2 1 6 4 5 1 ...
##  $ calories : num  212 212 100 147 110 ...
##  $ protein  : num  12.12 12.12 8 2.67 2 ...
##  $ fat      : num  3.03 3.03 0 2.67 0 ...
##  $ sodium   : num  394 788 280 240 125 ...
##  $ fibre    : num  30.3 27.3 28 2 1 ...
##  $ carbo    : num  15.2 21.2 16 14 11 ...
##  $ sugars   : num  18.2 15.2 0 13.3 14 ...
##  $ shelf    : int  3 3 3 1 2 3 1 3 2 1 ...
##  $ potassium: num  848.5 969.7 660 93.3 30 ...
##  $ vitamins : Factor w/ 3 levels "100%","enriched",..: 2 2 2 2 2 2 2 2 2 2 ...
# PUNTO B) ASOCIACIONES ENTRE SUS VARIABLES:
# RELACION MANUFACTURER Y SHELF:
table(UScereal$mfr,UScereal$shelf)
##    
##      1  2  3
##   G  6  7  9
##   K  4  7 10
##   N  2  0  1
##   P  2  1  6
##   Q  0  3  2
##   R  4  0  1
# RELACION FAT Y VITAMINS:
table(UScereal$vitamins,UScereal$fat)
##           
##             0 0.6666667  1 1.1363636 1.3333333 1.4925373 1.6  2 2.6666667
##   100%      1         0  3         0         1         0   0  0         0
##   enriched 18         1  7         1         8         4   1  2         3
##   none      3         0  0         0         0         0   0  0         0
##           
##            2.9850746 3.030303  4  6 9.0909091
##   100%             0        0  0  0         0
##   enriched         4        2  4  1         1
##   none             0        0  0  0         0
# RELACION FAT Y SHELF:
table(UScereal$shelf,UScereal$fat)
##    
##      0 0.6666667  1 1.1363636 1.3333333 1.4925373 1.6  2 2.6666667 2.9850746
##   1 10         0  2         0         2         2   1  0         1         0
##   2  3         1  5         0         4         1   0  1         1         1
##   3  9         0  3         1         3         1   0  1         1         3
##    
##     3.030303  4  6 9.0909091
##   1        0  0  0         0
##   2        0  1  0         0
##   3        2  3  1         1
barplot(table(UScereal$fat,UScereal$shelf), beside = T,main = "FAT Y SHELF", las=1, col=c("pink", "purple", "violet"))

# RELACION CARBOHYDRATES Y SUGARS:
table(UScereal$carbo,UScereal$sugars)
##           
##            0 0.8 1.769912 2 3 4 4.477612 5.681818 6 6.666667 7.462687 8.270677
##   10.52632 0   0        0 0 0 0        0        0 0        0        0        1
##   11       0   0        0 0 0 0        0        0 0        0        0        0
##   12       0   0        0 0 0 0        0        0 0        0        0        0
##   12.5     0   0        0 0 0 0        0        0 0        0        0        0
##   13       1   0        0 0 0 0        0        0 0        0        0        0
##   13.6     0   1        0 0 0 0        0        0 0        0        0        0
##   14       0   0        0 1 0 0        0        0 0        0        0        0
##   14.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   15       0   0        0 0 0 0        0        0 1        0        0        0
##   15.15152 0   0        0 0 0 0        0        0 0        0        0        0
##   15.33333 0   0        0 0 0 0        0        0 0        0        0        0
##   16       1   0        0 0 2 0        0        0 0        0        0        0
##   16.41791 0   0        0 0 0 0        0        0 0        0        0        0
##   17       0   0        0 0 1 0        0        0 0        0        0        0
##   17.04545 0   0        0 0 0 0        0        1 0        0        0        0
##   17.33333 0   0        0 0 0 0        0        0 0        0        0        0
##   17.5     0   0        0 0 0 0        0        0 0        0        0        0
##   17.91045 0   0        0 0 0 0        0        0 0        0        0        0
##   18.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   19.40299 0   0        0 0 0 0        0        0 0        0        1        0
##   20       0   0        0 0 1 0        0        0 0        0        0        0
##   20.35398 0   0        1 0 0 0        0        0 0        0        0        0
##   20.89552 0   0        0 0 0 0        0        0 0        0        0        0
##   21       0   0        0 1 2 0        0        0 0        0        0        0
##   21.21212 0   0        0 0 0 0        0        0 0        0        0        0
##   21.33333 0   0        0 0 0 0        0        0 0        0        0        0
##   22       0   0        0 0 2 0        0        0 0        0        0        0
##   22.38806 0   0        0 0 0 0        0        0 0        0        0        0
##   24       0   0        0 0 0 0        0        0 0        1        0        0
##   25.37313 0   0        0 0 0 0        1        0 0        0        0        0
##   26       0   0        0 0 0 0        0        0 0        0        0        0
##   26.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   27       0   0        0 0 0 0        0        0 0        0        0        0
##   28       0   0        0 0 0 1        0        0 0        0        0        0
##   28.35821 1   0        0 0 0 0        0        0 0        0        0        0
##   29.85075 1   0        0 0 0 0        0        0 0        0        0        0
##   30       0   0        0 0 0 0        0        0 0        0        0        0
##   31.34328 0   0        0 0 0 0        0        0 0        0        0        0
##   39.39394 0   0        0 0 0 0        0        0 0        0        0        0
##   68       0   0        0 0 0 0        0        0 0        0        0        0
##           
##            8.75 8.955224 10.447761 10.666667 11 12 12.121212 13 13.333333
##   10.52632    0        0         0         0  0  0         0  0         0
##   11          0        0         0         0  0  0         0  1         0
##   12          0        0         0         0  1  1         0  2         0
##   12.5        0        0         0         0  0  0         0  0         0
##   13          0        0         0         0  0  2         0  0         0
##   13.6        0        0         0         0  0  0         0  0         0
##   14          0        0         0         0  0  0         0  0         1
##   14.66667    0        0         0         0  0  0         0  0         1
##   15          0        0         0         0  0  0         0  0         0
##   15.15152    0        0         0         0  0  0         0  0         0
##   15.33333    0        0         0         0  0  0         0  0         1
##   16          0        0         0         0  0  0         0  0         0
##   16.41791    0        0         0         0  0  0         0  0         0
##   17          0        0         0         0  0  0         0  0         0
##   17.04545    0        0         0         0  0  0         0  0         0
##   17.33333    0        0         0         0  0  1         0  0         0
##   17.5        1        0         0         0  0  0         0  0         0
##   17.91045    0        1         0         0  0  0         0  0         0
##   18.66667    0        0         0         0  0  0         0  0         0
##   19.40299    0        0         0         0  0  0         0  0         0
##   20          0        0         0         0  0  1         0  0         0
##   20.35398    0        0         0         0  0  0         0  0         0
##   20.89552    0        0         0         0  0  0         0  0         0
##   21          0        0         0         0  0  0         0  0         0
##   21.21212    0        0         0         0  0  0         0  0         0
##   21.33333    0        0         0         1  0  0         0  0         0
##   22          0        0         0         0  0  0         0  0         0
##   22.38806    0        1         0         0  0  0         0  0         0
##   24          0        0         0         1  0  0         0  0         0
##   25.37313    0        0         0         0  0  0         0  0         0
##   26          0        0         0         0  0  0         0  0         0
##   26.66667    0        0         0         0  0  1         0  0         0
##   27          0        0         0         0  0  0         0  0         0
##   28          0        0         0         0  0  1         0  0         0
##   28.35821    0        0         0         0  0  0         0  0         0
##   29.85075    0        0         0         0  0  0         0  0         0
##   30          0        0         0         0  0  1         0  0         0
##   31.34328    0        0         1         0  0  0         0  0         0
##   39.39394    0        0         0         0  0  0         1  0         0
##   68          0        0         0         0  0  1         0  0         0
##           
##            13.432836 14 14.666667 14.925373 15.151515 16 17.045455 17.910448
##   10.52632         0  0         0         0         0  0         0         0
##   11               0  1         0         0         0  0         0         0
##   12               0  0         0         0         0  0         0         0
##   12.5             0  0         0         0         0  0         1         0
##   13               0  0         0         0         0  0         0         0
##   13.6             0  0         0         0         0  0         0         0
##   14               0  0         0         0         0  0         0         0
##   14.66667         0  0         0         0         0  0         0         0
##   15               0  1         0         0         0  0         0         0
##   15.15152         0  0         0         0         0  0         0         0
##   15.33333         0  0         0         0         0  0         0         0
##   16               0  0         0         0         0  1         0         0
##   16.41791         0  0         0         0         0  0         0         0
##   17               0  0         0         0         0  0         0         0
##   17.04545         0  0         0         0         0  0         0         0
##   17.33333         0  0         0         0         0  1         0         0
##   17.5             0  0         0         0         0  0         0         0
##   17.91045         0  0         0         1         0  0         0         0
##   18.66667         0  0         1         0         0  1         0         0
##   19.40299         0  0         0         0         0  0         0         0
##   20               0  1         0         0         0  0         0         0
##   20.35398         0  0         0         0         0  0         0         0
##   20.89552         0  0         0         0         0  0         0         1
##   21               0  0         0         0         0  1         0         0
##   21.21212         0  0         0         0         1  0         0         0
##   21.33333         0  0         0         0         0  0         0         0
##   22               0  0         0         0         0  0         0         0
##   22.38806         1  0         0         0         0  0         0         0
##   24               0  0         0         0         0  0         0         0
##   25.37313         0  0         0         0         0  0         0         0
##   26               0  1         0         0         0  0         0         0
##   26.66667         0  0         0         0         0  0         0         0
##   27               0  0         0         0         0  0         0         0
##   28               0  0         0         0         0  0         0         0
##   28.35821         0  0         0         0         0  0         0         0
##   29.85075         0  0         0         0         0  0         0         0
##   30               0  0         0         0         0  0         0         0
##   31.34328         0  0         0         0         0  0         0         0
##   39.39394         0  0         0         0         0  0         0         0
##   68               0  0         0         0         0  0         0         0
##           
##            18.181818 19.402985 20 20.895522
##   10.52632         0         0  0         0
##   11               0         0  0         0
##   12               0         0  1         0
##   12.5             0         0  0         0
##   13               0         0  0         0
##   13.6             0         0  0         0
##   14               0         0  0         0
##   14.66667         0         0  0         0
##   15               0         0  0         0
##   15.15152         1         0  0         0
##   15.33333         0         0  0         0
##   16               0         0  0         0
##   16.41791         0         0  0         1
##   17               0         0  0         0
##   17.04545         0         0  0         0
##   17.33333         0         0  0         0
##   17.5             0         0  0         0
##   17.91045         0         0  0         0
##   18.66667         0         0  0         0
##   19.40299         0         0  0         0
##   20               0         0  0         0
##   20.35398         0         0  0         0
##   20.89552         0         0  0         0
##   21               0         0  0         0
##   21.21212         0         0  0         0
##   21.33333         0         0  0         0
##   22               0         0  0         0
##   22.38806         0         0  0         0
##   24               0         0  0         0
##   25.37313         0         1  0         0
##   26               0         0  0         0
##   26.66667         0         0  0         0
##   27               0         0  1         0
##   28               0         0  0         0
##   28.35821         0         0  0         0
##   29.85075         0         0  0         0
##   30               0         0  0         0
##   31.34328         0         0  0         0
##   39.39394         0         0  0         0
##   68               0         0  0         0
plot(UScereal$carbo,UScereal$sugars, main = "CARBOHYDRATES Y SUGARS", las=1, col=c("green", "black", "yellow"))

# RELACION FIBRE Y MANUFACTURER:
table(UScereal$mfr, UScereal$fibre)
##    
##     0 1 1.333333 1.6 2 2.666667 2.985075 3 3.409091 3.75 4 4.477612 5 5.970149
##   G 9 0        1   1 3        2        0 3        0    0 2        0 1        0
##   K 2 7        2   0 0        1        0 0        0    1 1        2 0        0
##   N 0 0        0   0 0        0        0 0        0    0 0        1 0        1
##   P 3 0        0   0 0        0        0 0        1    0 0        0 0        0
##   Q 2 1        0   0 0        0        1 0        0    0 1        0 0        0
##   R 2 0        1   0 0        0        0 0        0    0 0        1 0        1
##    
##     6.666667 7.462687 8 8.955224 9.090909 12 27.272727 28 30.30303
##   G        0        0 0        0        0  0         0  0        0
##   K        1        1 1        0        0  0         1  1        0
##   N        0        0 0        0        0  0         0  0        1
##   P        0        2 0        1        1  1         0  0        0
##   Q        0        0 0        0        0  0         0  0        0
##   R        0        0 0        0        0  0         0  0        0
# RELACION SODIUM Y SUGARS:
table(UScereal$sodium, UScereal$sugars)
##            
##             0 0.8 1.769912 2 3 4 4.477612 5.681818 6 6.666667 7.462687 8.270677
##   0         3   0        0 0 0 0        0        0 0        0        0        0
##   51.13636  0   0        0 0 0 0        0        0 0        0        0        0
##   90        0   0        0 0 0 0        0        0 0        0        0        0
##   93.33333  0   0        0 0 0 0        0        0 0        0        0        0
##   125       0   0        0 0 0 0        0        0 0        0        0        0
##   135.33835 0   0        0 0 0 0        0        0 0        0        0        1
##   140       0   0        0 0 0 0        0        0 0        0        0        0
##   159.09091 0   0        0 0 0 0        0        1 0        0        0        0
##   173.33333 0   0        0 1 0 0        0        0 0        0        0        0
##   180       0   0        0 0 0 0        0        0 0        0        0        0
##   186.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   190       0   0        0 0 0 0        0        0 0        0        0        0
##   200       0   0        0 0 3 0        0        0 0        0        0        0
##   212.38938 0   0        1 0 0 0        0        0 0        0        0        0
##   220       0   0        0 0 1 0        0        0 1        0        0        0
##   223.8806  0   0        0 0 0 0        0        0 0        0        0        0
##   226.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   227.27273 0   0        0 0 0 0        0        0 0        0        0        0
##   230       0   0        0 0 1 0        0        0 0        0        0        0
##   232       0   1        0 0 0 0        0        0 0        0        0        0
##   238.80597 0   0        0 0 0 0        0        0 0        0        0        0
##   240       0   0        0 0 0 0        0        0 0        0        0        0
##   253.33333 0   0        0 0 0 0        0        0 0        1        0        0
##   266.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   270       0   0        0 0 0 0        0        0 0        0        0        0
##   280       1   0        0 0 1 0        0        0 0        0        0        0
##   283.58209 0   0        0 0 0 0        0        0 0        0        0        0
##   290       0   0        0 1 1 0        0        0 0        0        0        0
##   293.33333 0   0        0 0 0 0        0        0 0        0        0        0
##   298.50746 0   0        0 0 0 0        0        0 0        0        0        0
##   313.43284 0   0        0 0 0 0        0        0 0        0        1        0
##   320       0   0        0 0 1 0        0        0 0        0        0        0
##   328.35821 0   0        0 0 0 0        0        0 0        0        0        0
##   333.33333 0   0        0 0 0 1        0        0 0        0        0        0
##   340       0   0        0 0 0 0        0        0 0        0        0        0
##   343.28358 0   0        0 0 0 0        1        0 0        0        0        0
##   358.20896 0   0        0 0 0 0        0        0 0        0        0        0
##   373.33333 0   0        0 0 0 0        0        0 0        0        0        0
##   393.93939 0   0        0 0 0 0        0        0 0        0        0        0
##   680       0   0        0 0 0 0        0        0 0        0        0        0
##   787.87879 0   0        0 0 0 0        0        0 0        0        0        0
##            
##             8.75 8.955224 10.447761 10.666667 11 12 12.121212 13 13.333333
##   0            1        0         0         0  0  1         0  0         0
##   51.13636     0        0         0         0  0  0         0  0         0
##   90           0        0         0         0  0  1         0  0         0
##   93.33333     0        0         0         0  0  0         0  0         0
##   125          0        0         0         0  0  0         0  1         0
##   135.33835    0        0         0         0  0  0         0  0         0
##   140          0        0         0         0  0  1         0  0         0
##   159.09091    0        0         0         0  0  0         0  0         0
##   173.33333    0        0         0         0  0  0         0  0         0
##   180          0        0         0         0  0  1         0  2         0
##   186.66667    0        0         0         0  0  0         0  0         1
##   190          0        0         0         0  0  0         0  0         0
##   200          0        0         0         0  0  0         0  0         0
##   212.38938    0        0         0         0  0  0         0  0         0
##   220          0        0         0         0  1  0         0  0         0
##   223.8806     0        1         0         0  0  0         0  0         0
##   226.66667    0        0         0         0  0  1         0  0         0
##   227.27273    0        0         0         0  0  0         1  0         0
##   230          0        0         0         0  0  0         0  0         0
##   232          0        0         0         0  0  0         0  0         0
##   238.80597    0        0         0         0  0  0         0  0         0
##   240          0        0         0         0  0  0         0  0         1
##   253.33333    0        0         0         0  0  0         0  0         0
##   266.66667    0        0         0         1  0  0         0  0         0
##   270          0        0         0         0  0  1         0  0         0
##   280          0        0         0         1  0  1         0  0         0
##   283.58209    0        0         0         0  0  0         0  0         0
##   290          0        0         0         0  0  0         0  0         0
##   293.33333    0        0         0         0  0  0         0  0         0
##   298.50746    0        1         0         0  0  0         0  0         0
##   313.43284    0        0         0         0  0  0         0  0         0
##   320          0        0         0         0  0  0         0  0         0
##   328.35821    0        0         1         0  0  0         0  0         0
##   333.33333    0        0         0         0  0  0         0  0         1
##   340          0        0         0         0  0  0         0  0         0
##   343.28358    0        0         0         0  0  0         0  0         0
##   358.20896    0        0         0         0  0  0         0  0         0
##   373.33333    0        0         0         0  0  1         0  0         0
##   393.93939    0        0         0         0  0  0         0  0         0
##   680          0        0         0         0  0  1         0  0         0
##   787.87879    0        0         0         0  0  0         0  0         0
##            
##             13.432836 14 14.666667 14.925373 15.151515 16 17.045455 17.910448
##   0                 0  0         0         0         0  0         0         0
##   51.13636          0  0         0         0         0  0         1         0
##   90                0  0         0         0         0  0         0         0
##   93.33333          0  0         0         0         0  0         0         0
##   125               0  1         0         0         0  0         0         0
##   135.33835         0  0         0         0         0  0         0         0
##   140               0  0         0         0         0  0         0         0
##   159.09091         0  0         0         0         0  0         0         0
##   173.33333         0  0         0         0         0  0         0         0
##   180               0  0         0         0         0  1         0         0
##   186.66667         0  0         0         0         0  0         0         0
##   190               0  1         0         0         0  0         0         0
##   200               0  0         0         0         0  0         0         0
##   212.38938         0  0         0         0         0  0         0         0
##   220               0  0         0         0         0  0         0         0
##   223.8806          0  0         0         0         0  0         0         0
##   226.66667         0  0         0         0         0  0         0         0
##   227.27273         0  0         0         0         0  0         0         0
##   230               0  0         0         0         0  0         0         0
##   232               0  0         0         0         0  0         0         0
##   238.80597         0  0         0         1         0  0         0         0
##   240               0  0         0         0         0  0         0         0
##   253.33333         0  0         0         0         0  0         0         0
##   266.66667         0  0         1         0         0  0         0         0
##   270               0  0         0         0         0  0         0         0
##   280               0  2         0         0         0  2         0         0
##   283.58209         1  0         0         0         0  0         0         0
##   290               0  0         0         0         0  0         0         0
##   293.33333         0  0         0         0         0  1         0         0
##   298.50746         0  0         0         0         0  0         0         0
##   313.43284         0  0         0         0         0  0         0         0
##   320               0  0         0         0         0  0         0         0
##   328.35821         0  0         0         0         0  0         0         0
##   333.33333         0  0         0         0         0  0         0         0
##   340               0  0         0         0         0  0         0         0
##   343.28358         0  0         0         0         0  0         0         0
##   358.20896         0  0         0         0         0  0         0         1
##   373.33333         0  0         0         0         0  0         0         0
##   393.93939         0  0         0         0         0  0         0         0
##   680               0  0         0         0         0  0         0         0
##   787.87879         0  0         0         0         1  0         0         0
##            
##             18.181818 19.402985 20 20.895522
##   0                 0         0  0         0
##   51.13636          0         0  0         0
##   90                0         0  0         0
##   93.33333          0         0  1         0
##   125               0         0  0         0
##   135.33835         0         0  0         0
##   140               0         0  0         0
##   159.09091         0         0  0         0
##   173.33333         0         0  0         0
##   180               0         0  0         0
##   186.66667         0         0  0         0
##   190               0         0  0         0
##   200               0         0  0         0
##   212.38938         0         0  0         0
##   220               0         0  0         0
##   223.8806          0         1  0         0
##   226.66667         0         0  0         0
##   227.27273         0         0  0         0
##   230               0         0  0         0
##   232               0         0  0         0
##   238.80597         0         0  0         0
##   240               0         0  0         0
##   253.33333         0         0  0         0
##   266.66667         0         0  0         0
##   270               0         0  0         0
##   280               0         0  0         0
##   283.58209         0         0  0         0
##   290               0         0  0         0
##   293.33333         0         0  0         0
##   298.50746         0         0  0         1
##   313.43284         0         0  0         0
##   320               0         0  0         0
##   328.35821         0         0  0         0
##   333.33333         0         0  0         0
##   340               0         0  1         0
##   343.28358         0         0  0         0
##   358.20896         0         0  0         0
##   373.33333         0         0  0         0
##   393.93939         1         0  0         0
##   680               0         0  0         0
##   787.87879         0         0  0         0
# PUNTO 2.4, RELACION PESO CORPORAL Y PESO DEL CEREBRO:
# PUNTO A) CORRELACION LINEAL ENTRE LAS VARIABLES:
attach(mammals)
cor (mammals) 
##            body     brain
## body  1.0000000 0.9341638
## brain 0.9341638 1.0000000
cor(mammals$body, mammals$brain)
## [1] 0.9341638
# PUNTO B) REPRESENTACION PLOT:
 plot(mammals, main="REPRESENTACION GRAFICA DE VARIABLES", las=1, col=c("blue", "salmon"))

# PUNTO C) FUNCION LOG:
cor(x=log(mammals$body), y=log(mammals$brain))
## [1] 0.9595748
plot(log(mammals), main="REPRESENTACION GRAFICA DE LOG", las=1, col=c("pink", "purple"))

# PUNTO 2.5, EMISSIONS PAQUETE UsingR:
# PUNTO A) RELACION GDP, PERCAPITA Y CO2 DE CADA PAIS:
UsingR::emissions
##                   GDP perCapita  CO2
## UnitedStates  8083000     29647 6750
## Japan         3080000     24409 1320
## Germany       1740000     21197 1740
## France        1320000     22381  550
## UnitedKingdom 1242000     21010  675
## Italy         1240000     21856  540
## Russia         692000      4727 2000
## Canada         658000     21221  700
## Spain          642400     16401  370
## Australia      394000     20976  480
## Netherlands    343900     21755  240
## Poland         280700      7270  400
## Belgium        236300     23208  145
## Sweden         176200     19773   75
## Austria        174100     21390   80
## Switzerland    172400     23696   54
## Portugal       149500     15074   75
## Greece         137400     12833  125
## Ukraine        124900      2507  420
## Denmark        122500     22868   75
## Norway         120500     27149   56
## Romania        114200      5136  160
## CzechRepublic  111900     10885  150
## Finland        102100     19793   76
## Hungary         73200      7186   85
## Ireland         59900     16488   63
pairs(emissions, main= "REPRESENTACION GRAFICA DE RELACION GDP, PERCAPITA, CO2", las=1, col=c("green", "yellow"))

cor(emissions)
##                 GDP perCapita       CO2
## GDP       1.0000000 0.4325303 0.9501753
## perCapita 0.4325303 1.0000000 0.2757962
## CO2       0.9501753 0.2757962 1.0000000
# PUNTO B) MODELO DE REGRESION:
r_lineal= lm(emissions$CO2 ~ emissions$GDP + emissions$perCapita, data = emissions)
summary(r_lineal)
## 
## Call:
## lm(formula = emissions$CO2 ~ emissions$GDP + emissions$perCapita, 
##     data = emissions)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1037.3  -167.4    10.8   153.2  1052.0 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.100e+02  2.044e+02   2.495   0.0202 *  
## emissions$GDP        8.406e-04  5.198e-05  16.172 4.68e-14 ***
## emissions$perCapita -3.039e-02  1.155e-02  -2.631   0.0149 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 382.8 on 23 degrees of freedom
## Multiple R-squared:  0.9253, Adjusted R-squared:  0.9188 
## F-statistic: 142.5 on 2 and 23 DF,  p-value: 1.102e-13
plot(emissions$GDP+emissions$perCapita,emissions$CO2, main="REPRESENTACION GRAFICA DE MODELO DE REGRESION")
abline(r_lineal,col = "violet")
## Warning in abline(r_lineal, col = "violet"): only using the first two of 3
## regression coefficients

emissions$CO2
##  [1] 6750 1320 1740  550  675  540 2000  700  370  480  240  400  145   75   80
## [16]   54   75  125  420   75   56  160  150   76   85   63
CO2_predict <- predict(r_lineal,emissions)
plot(emissions$GDP+emissions$perCapita,CO2_predict, main="REPRESENTACION GRAFICA", col=c("pink"))

CO2_predict
##  UnitedStates         Japan       Germany        France UnitedKingdom 
##   6403.720110   2357.274571   1328.457202    939.412260    915.510264 
##         Italy        Russia        Canada         Spain     Australia 
##    888.117914    948.030553    418.174003    551.546727    203.695487 
##   Netherlands        Poland       Belgium        Sweden       Austria 
##    137.905405    524.997147      3.295727     57.168681      6.260516 
##   Switzerland      Portugal        Greece       Ukraine       Denmark 
##    -65.251059    177.533136    235.468677    538.782254    -82.034073 
##        Norway       Romania CzechRepublic       Finland       Hungary 
##   -213.820805    449.888660    273.235200     -5.729292    353.120804 
##       Ireland 
##     59.239930
cor(emissions$CO2,CO2_predict)
## [1] 0.9619321
# PUNTO C) OUTLIERS:
boxplot(emissions, main="REPRESENTACION GRAFICA DE OUTLIERS", col=c("red"))

# PUNTO 2.6, BASE DE DATOS MASS:
data("anorexia")
head(anorexia)
##   Treat Prewt Postwt
## 1  Cont  80.7   80.2
## 2  Cont  89.4   80.1
## 3  Cont  91.8   86.4
## 4  Cont  74.0   86.3
## 5  Cont  78.1   76.1
## 6  Cont  88.3   78.1
# PUNTO A) TRATAMIENTO MAS EFECTIVO:
pos_pesos <- which(anorexia$Postwt>anorexia$Prewt)
casos_exito = anorexia[c(pos_pesos),]
mejor_tratamiento = which.max(table(casos_exito$Treat))
mejor_tratamiento = c(paste(names(mejor_tratamiento),": 
",max(table(casos_exito$Treat))," casos exitosos"))
table(casos_exito$Treat)
## 
##  CBT Cont   FT 
##   18   11   13
mejor_tratamiento
## [1] "CBT : \n 18  casos exitosos"
# PUNTO B) PACIENTES QUE GANARON Y PERDIERON PESO:
# pacientes que ganaron peso
anorexia["diferencia"] <- anorexia$Postwt - anorexia$Prewt
ganaron <- length(anorexia[anorexia$diferencia > 0,"diferencia"])
ganaron
## [1] 42
# pacientes que perdieron peso
perdieron <- length(anorexia[anorexia$diferencia < 0,"diferencia"])
perdieron
## [1] 29
# pacientes con el mismo peso
igual <- length(anorexia[anorexia$diferencia == 0,"diferencia"])
igual
## [1] 1
# PUNTO C) GRAFICA DEL PUNTO B:
barplot(c(ganaron,perdieron), main = "REPRESENTACION GRAFICA DE GANANCIA Y PERDIDA DE PESO", ylab = "NUMERO DE PACIENTES", col = c("darkorange","skyblue"))
legend("topright", legend = c(paste("Ganaron peso",ganaron),paste("Perdieron peso: ",perdieron)), fill = c("darkorange","skyblue"))

# PUNTO 2.7, MELANOMA:
MASS::Melanoma
##     time status sex age year thickness ulcer
## 1     10      3   1  76 1972      6.76     1
## 2     30      3   1  56 1968      0.65     0
## 3     35      2   1  41 1977      1.34     0
## 4     99      3   0  71 1968      2.90     0
## 5    185      1   1  52 1965     12.08     1
## 6    204      1   1  28 1971      4.84     1
## 7    210      1   1  77 1972      5.16     1
## 8    232      3   0  60 1974      3.22     1
## 9    232      1   1  49 1968     12.88     1
## 10   279      1   0  68 1971      7.41     1
## 11   295      1   0  53 1969      4.19     1
## 12   355      3   0  64 1972      0.16     1
## 13   386      1   0  68 1965      3.87     1
## 14   426      1   1  63 1970      4.84     1
## 15   469      1   0  14 1969      2.42     1
## 16   493      3   1  72 1971     12.56     1
## 17   529      1   1  46 1971      5.80     1
## 18   621      1   1  72 1972      7.06     1
## 19   629      1   1  95 1968      5.48     1
## 20   659      1   1  54 1972      7.73     1
## 21   667      1   0  89 1968     13.85     1
## 22   718      1   1  25 1967      2.34     1
## 23   752      1   1  37 1973      4.19     1
## 24   779      1   1  43 1967      4.04     1
## 25   793      1   1  68 1970      4.84     1
## 26   817      1   0  67 1966      0.32     0
## 27   826      3   0  86 1965      8.54     1
## 28   833      1   0  56 1971      2.58     1
## 29   858      1   0  16 1967      3.56     0
## 30   869      1   0  42 1965      3.54     0
## 31   872      1   0  65 1968      0.97     0
## 32   967      1   1  52 1970      4.83     1
## 33   977      1   1  58 1967      1.62     1
## 34   982      1   0  60 1970      6.44     1
## 35  1041      1   1  68 1967     14.66     0
## 36  1055      1   0  75 1967      2.58     1
## 37  1062      1   1  19 1966      3.87     1
## 38  1075      1   1  66 1971      3.54     1
## 39  1156      1   0  56 1970      1.34     1
## 40  1228      1   1  46 1973      2.24     1
## 41  1252      1   0  58 1971      3.87     1
## 42  1271      1   0  74 1971      3.54     1
## 43  1312      1   0  65 1970     17.42     1
## 44  1427      3   1  64 1972      1.29     0
## 45  1435      1   1  27 1969      3.22     0
## 46  1499      2   1  73 1973      1.29     0
## 47  1506      1   1  56 1970      4.51     1
## 48  1508      2   1  63 1973      8.38     1
## 49  1510      2   0  69 1973      1.94     0
## 50  1512      2   0  77 1973      0.16     0
## 51  1516      1   1  80 1968      2.58     1
## 52  1525      3   0  76 1970      1.29     1
## 53  1542      2   0  65 1973      0.16     0
## 54  1548      1   0  61 1972      1.62     0
## 55  1557      2   0  26 1973      1.29     0
## 56  1560      1   0  57 1973      2.10     0
## 57  1563      2   0  45 1973      0.32     0
## 58  1584      1   1  31 1970      0.81     0
## 59  1605      2   0  36 1973      1.13     0
## 60  1621      1   0  46 1972      5.16     1
## 61  1627      2   0  43 1973      1.62     0
## 62  1634      2   0  68 1973      1.37     0
## 63  1641      2   1  57 1973      0.24     0
## 64  1641      2   0  57 1973      0.81     0
## 65  1648      2   0  55 1973      1.29     0
## 66  1652      2   0  58 1973      1.29     0
## 67  1654      2   1  20 1973      0.97     0
## 68  1654      2   0  67 1973      1.13     0
## 69  1667      1   0  44 1971      5.80     1
## 70  1678      2   0  59 1973      1.29     0
## 71  1685      2   0  32 1973      0.48     0
## 72  1690      1   1  83 1971      1.62     0
## 73  1710      2   0  55 1973      2.26     0
## 74  1710      2   1  15 1973      0.58     0
## 75  1726      1   0  58 1970      0.97     1
## 76  1745      2   0  47 1973      2.58     1
## 77  1762      2   0  54 1973      0.81     0
## 78  1779      2   1  55 1973      3.54     1
## 79  1787      2   1  38 1973      0.97     0
## 80  1787      2   0  41 1973      1.78     1
## 81  1793      2   0  56 1973      1.94     0
## 82  1804      2   0  48 1973      1.29     0
## 83  1812      2   1  44 1973      3.22     1
## 84  1836      2   0  70 1972      1.53     0
## 85  1839      2   0  40 1972      1.29     0
## 86  1839      2   1  53 1972      1.62     1
## 87  1854      2   0  65 1972      1.62     1
## 88  1856      2   1  54 1972      0.32     0
## 89  1860      3   1  71 1969      4.84     1
## 90  1864      2   0  49 1972      1.29     0
## 91  1899      2   0  55 1972      0.97     0
## 92  1914      2   0  69 1972      3.06     0
## 93  1919      2   1  83 1972      3.54     0
## 94  1920      2   1  60 1972      1.62     1
## 95  1927      2   1  40 1972      2.58     1
## 96  1933      1   0  77 1972      1.94     0
## 97  1942      2   0  35 1972      0.81     0
## 98  1955      2   0  46 1972      7.73     1
## 99  1956      2   0  34 1972      0.97     0
## 100 1958      2   0  69 1972     12.88     0
## 101 1963      2   0  60 1972      2.58     0
## 102 1970      2   1  84 1972      4.09     1
## 103 2005      2   0  66 1972      0.64     0
## 104 2007      2   1  56 1972      0.97     0
## 105 2011      2   0  75 1972      3.22     1
## 106 2024      2   0  36 1972      1.62     0
## 107 2028      2   1  52 1972      3.87     1
## 108 2038      2   0  58 1972      0.32     1
## 109 2056      2   0  39 1972      0.32     0
## 110 2059      2   1  68 1972      3.22     1
## 111 2061      1   1  71 1968      2.26     0
## 112 2062      1   0  52 1965      3.06     0
## 113 2075      2   1  55 1972      2.58     1
## 114 2085      3   0  66 1970      0.65     0
## 115 2102      2   1  35 1972      1.13     0
## 116 2103      1   1  44 1966      0.81     0
## 117 2104      2   0  72 1972      0.97     0
## 118 2108      1   0  58 1969      1.76     1
## 119 2112      2   0  54 1972      1.94     1
## 120 2150      2   0  33 1972      0.65     0
## 121 2156      2   0  45 1972      0.97     0
## 122 2165      2   1  62 1972      5.64     0
## 123 2209      2   0  72 1971      9.66     0
## 124 2227      2   0  51 1971      0.10     0
## 125 2227      2   1  77 1971      5.48     1
## 126 2256      1   0  43 1971      2.26     1
## 127 2264      2   0  65 1971      4.83     1
## 128 2339      2   0  63 1971      0.97     0
## 129 2361      2   1  60 1971      0.97     0
## 130 2387      2   0  50 1971      5.16     1
## 131 2388      1   1  40 1966      0.81     0
## 132 2403      2   0  67 1971      2.90     1
## 133 2426      2   0  69 1971      3.87     0
## 134 2426      2   0  74 1971      1.94     1
## 135 2431      2   0  49 1971      0.16     0
## 136 2460      2   0  47 1971      0.64     0
## 137 2467      1   0  42 1965      2.26     1
## 138 2492      2   0  54 1971      1.45     0
## 139 2493      2   1  72 1971      4.82     1
## 140 2521      2   0  45 1971      1.29     1
## 141 2542      2   1  67 1971      7.89     1
## 142 2559      2   0  48 1970      0.81     1
## 143 2565      1   1  34 1970      3.54     1
## 144 2570      2   0  44 1970      1.29     0
## 145 2660      2   0  31 1970      0.64     0
## 146 2666      2   0  42 1970      3.22     1
## 147 2676      2   0  24 1970      1.45     1
## 148 2738      2   0  58 1970      0.48     0
## 149 2782      1   1  78 1969      1.94     0
## 150 2787      2   1  62 1970      0.16     0
## 151 2984      2   1  70 1969      0.16     0
## 152 3032      2   0  35 1969      1.29     0
## 153 3040      2   0  61 1969      1.94     0
## 154 3042      1   0  54 1967      3.54     1
## 155 3067      2   0  29 1969      0.81     0
## 156 3079      2   1  64 1969      0.65     0
## 157 3101      2   1  47 1969      7.09     0
## 158 3144      2   1  62 1969      0.16     0
## 159 3152      2   0  32 1969      1.62     0
## 160 3154      3   1  49 1969      1.62     0
## 161 3180      2   0  25 1969      1.29     0
## 162 3182      3   1  49 1966      6.12     0
## 163 3185      2   0  64 1969      0.48     0
## 164 3199      2   0  36 1969      0.64     0
## 165 3228      2   0  58 1969      3.22     1
## 166 3229      2   0  37 1969      1.94     0
## 167 3278      2   1  54 1969      2.58     0
## 168 3297      2   0  61 1968      2.58     1
## 169 3328      2   1  31 1968      0.81     0
## 170 3330      2   1  61 1968      0.81     1
## 171 3338      1   0  60 1967      3.22     1
## 172 3383      2   0  43 1968      0.32     0
## 173 3384      2   0  68 1968      3.22     1
## 174 3385      2   0   4 1968      2.74     0
## 175 3388      2   1  60 1968      4.84     1
## 176 3402      2   1  50 1968      1.62     0
## 177 3441      2   0  20 1968      0.65     0
## 178 3458      3   0  54 1967      1.45     0
## 179 3459      2   0  29 1968      0.65     0
## 180 3459      2   1  56 1968      1.29     1
## 181 3476      2   0  60 1968      1.62     0
## 182 3523      2   0  46 1968      3.54     0
## 183 3667      2   0  42 1967      3.22     0
## 184 3695      2   0  34 1967      0.65     0
## 185 3695      2   0  56 1967      1.03     0
## 186 3776      2   1  12 1967      7.09     1
## 187 3776      2   0  21 1967      1.29     1
## 188 3830      2   1  46 1967      0.65     0
## 189 3856      2   0  49 1967      1.78     0
## 190 3872      2   0  35 1967     12.24     1
## 191 3909      2   1  42 1967      8.06     1
## 192 3968      2   0  47 1967      0.81     0
## 193 4001      2   0  69 1967      2.10     0
## 194 4103      2   0  52 1966      3.87     0
## 195 4119      2   1  52 1966      0.65     0
## 196 4124      2   0  30 1966      1.94     1
## 197 4207      2   1  22 1966      0.65     0
## 198 4310      2   1  55 1966      2.10     0
## 199 4390      2   0  26 1965      1.94     1
## 200 4479      2   0  19 1965      1.13     1
## 201 4492      2   1  29 1965      7.06     1
## 202 4668      2   0  40 1965      6.12     0
## 203 4688      2   0  42 1965      0.48     0
## 204 4926      2   0  50 1964      2.26     0
## 205 5565      2   0  41 1962      2.90     0
# PUNTO A) NUMERO DE FALLECIDOS:
Melanoma$ulcer
##   [1] 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1
##  [38] 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
##  [75] 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0
## [112] 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0
## [149] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0
## [186] 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0
N_fallecidos = nrow(Melanoma[Melanoma$status==1,]) + nrow(Melanoma[Melanoma$status==3,])
N_fallecidos
## [1] 71
# PUNTO B) PRESENCIA Y AUSENCIA:
table(Melanoma[,"ulcer"])
## 
##   0   1 
## 115  90
# presencia
sum(Melanoma$ulcer=="1")
## [1] 90
# ausencia
sum(Melanoma$ulcer=="0")
## [1] 115
# PUNTO C) TAMAÑO DEL TUMOR Y MUERTE:
table(Melanoma$thickness, Melanoma$status)
##        
##          1  2  3
##   0.1    0  1  0
##   0.16   0  6  1
##   0.24   0  1  0
##   0.32   1  5  0
##   0.48   0  4  0
##   0.58   0  1  0
##   0.64   0  4  0
##   0.65   0  8  2
##   0.81   3  8  0
##   0.97   2  9  0
##   1.03   0  1  0
##   1.13   0  4  0
##   1.29   0 14  2
##   1.34   1  1  0
##   1.37   0  1  0
##   1.45   0  2  1
##   1.53   0  1  0
##   1.62   3  8  1
##   1.76   1  0  0
##   1.78   0  2  0
##   1.94   2  8  0
##   2.1    1  2  0
##   2.24   1  0  0
##   2.26   3  2  0
##   2.34   1  0  0
##   2.42   1  0  0
##   2.58   3  6  0
##   2.74   0  1  0
##   2.9    0  2  1
##   3.06   1  1  0
##   3.22   2  7  1
##   3.54   5  3  0
##   3.56   1  0  0
##   3.87   3  3  0
##   4.04   1  0  0
##   4.09   0  1  0
##   4.19   2  0  0
##   4.51   1  0  0
##   4.82   0  1  0
##   4.83   1  1  0
##   4.84   3  1  1
##   5.16   2  1  0
##   5.48   1  1  0
##   5.64   0  1  0
##   5.8    2  0  0
##   6.12   0  1  1
##   6.44   1  0  0
##   6.76   0  0  1
##   7.06   1  1  0
##   7.09   0  2  0
##   7.41   1  0  0
##   7.73   1  1  0
##   7.89   0  1  0
##   8.06   0  1  0
##   8.38   0  1  0
##   8.54   0  0  1
##   9.66   0  1  0
##   12.08  1  0  0
##   12.24  0  1  0
##   12.56  0  0  1
##   12.88  1  1  0
##   13.85  1  0  0
##   14.66  1  0  0
##   17.42  1  0  0
Melanoma1 = Melanoma
s1 <- which((Melanoma1$status==1))
s2 <- which((Melanoma1$status==2))
s3 <- which((Melanoma1$status==3))
Melanoma1$status = replace(Melanoma1$status,s3,1)
Melanoma1$status = replace(Melanoma1$status,s2,0)
c( paste ("TAMAÑO DEL TUMOR Y MUERTE", cor (Melanoma1$thickness,Melanoma1$status)))
## [1] "TAMAÑO DEL TUMOR Y MUERTE 0.314179811783222"
# PUNTO D) GRAFICA DEL PUNTO B:
barplot(table(Melanoma$ulcer), main="REPRESENTACION GRAFICA DE LA PRESENCIA Y AUSENCIA DE MELANOMA", ylab = "NUMERO DE PACIENTES", beside = TRUE, legend.text = c("FALLECIDOS","VIVOS"), col=c("grey","pink"))

# PUNTO 2.8, BABYBOOM:
data("babyboom")
head(babyboom)
##   clock.time gender   wt running.time
## 1          5   girl 3837            5
## 2        104   girl 3334           64
## 3        118    boy 3554           78
## 4        155    boy 3838          115
## 5        257    boy 3625          177
## 6        405   girl 2208          245
# PUNTO A) NUMERO DE NIÑAS Y NIÑOS:
table(babyboom$gender)
## 
## girl  boy 
##   18   26
# PUNTO B) CANTIDAD DE NIÑOS NACIDOS EN LAS PRIMERAS 12H:
nacidos12h = nrow(babyboom[babyboom$clock.time<708,])
nacidos12h
## [1] 9
# PUNTO C) NIÑOS QUE NACIERON POR DEBAJO DE 3000GR:
ninos_bajo_peso= nrow(babyboom[babyboom$gender=='boy' & babyboom$wt<3000,])
ninos_bajo_peso
## [1] 4
# PUNTO D) RELACION DE PESO POR DEBAJO DE 3000GR Y SEXO:
barplot(table(babyboom$gender,babyboom$wt<3000),beside = T,col = c("pink","turquoise"),xlab="GENERO",ylab="NUMERO DE PACIENTES", main="REPRESENTACION GRAFICA PESO Y SEXO")

# PUNTO E) GRAFICA PROMEDIO PESO TOTAL, DE NIÑOS Y NIÑAS:
niños = median(babyboom$wt[babyboom$gender=='boy'])
niños
## [1] 3404
niñas = median(babyboom$wt[babyboom$gender=='girl'])
niñas
## [1] 3381
boxplot(babyboom$wt,ylab = "Peso (gr)",main = "PROMEDIO PESO TOTAL (niños y niñas)")
points(niños, col = "blue", pch = 15)
points(niñas, col = "purple", pch = 15)
legend(x = "topleft", legend = c(paste("NIÑOS", niños),paste("NIÑAS", niñas)), fill = c("blue", "purple"),title = "PROMEDIO DE LOS PESOS")

# PUNTO 2.9, AIDS2:
data("Aids2")
head(Aids2)
##   state sex  diag death status T.categ age
## 1   NSW   M 10905 11081      D      hs  35
## 2   NSW   M 11029 11096      D      hs  53
## 3   NSW   M  9551  9983      D      hs  42
## 4   NSW   M  9577  9654      D    haem  44
## 5   NSW   M 10015 10290      D      hs  39
## 6   NSW   M  9971 10344      D      hs  36
# PUNTO A) NUMERO DE CONTAGIOS POR ESTADO:
table(Aids2$state,Aids2$T.categ)
##        
##           hs hsid   id  het haem blood mother other
##   NSW   1539   50   28   18   30    70      3    42
##   Other  204    4   12    8    6     5      2     8
##   QLD    186    7    4    5    4    15      1     4
##   VIC    536   11    4   10    6     4      1    16
# PUNTO B) NUMERO DE FALLECIDOS:
fallecidos= sum(Aids2$status == "D")
paste("NUMERO DE FALLECIDOS",fallecidos)
## [1] "NUMERO DE FALLECIDOS 1761"
# PUNTO C) RELACION SEXO Y TIPO DE TRANSMISION:
table(Aids2$sex,Aids2$T.categ)
##    
##       hs hsid   id  het haem blood mother other
##   F    1    0   20   20    0    37      4     7
##   M 2464   72   28   21   46    57      3    63
barplot(table(Aids2$sex,Aids2$T.categ),beside = T,col = c("salmon1", "lightgoldenrod1"),xlab="REPRESENTACION GRAFICA DE TIPOS DE TRANSMISION",ylab="NUMERO DE PACIENTES") 
legend("topright",levels(Aids2$sex),fill = c("salmon1", "lightgoldenrod1"))

relacion_F_trans = Aids2[Aids2$sex=='F',]
barplot(table(relacion_F_trans$sex=='F',relacion_F_trans$T.categ), main = "REPRESENTACION GRAFICA ENTRE MUJERES Y TIPO DE TRANSMISION",ylab = "NUMERO DE PACIENTES", col=c("pink1"))

relacion_M_trans = Aids2[Aids2$sex=='M',]
barplot(table(relacion_M_trans$sex=='M',relacion_M_trans$T.categ),
        main = "REPRESENTACION GRAFICA ENTRE HOMBRES Y TIPO DE TRANSMISION",ylab = "NUMERO DE PACIENTES", col=c("steelblue"))

# PUNTO D) GRAFICA DE TIPOS DE TRANSMISION:
table(Aids2$T.categ)
## 
##     hs   hsid     id    het   haem  blood mother  other 
##   2465     72     48     41     46     94      7     70
colores = c("pink","skyblue","blueviolet","tomato","darkgreen","thistle","darkorange","gold")
pie(table(Aids2$T.categ),col = colores,labels = table(Aids2$T.categ), main = "REPRESENTACION GRAFICA NUMERO DE PACIENTES Y TIPOS DE TRANSMISION")
legend("topright",legend = levels(Aids2$T.categ),fill = colores)

# PUNTO 2.10 CRIME:
data(crime)
head(crime)
##            y1983  y1993
## Alabama    416.0  871.7
## Alaska     613.8  660.5
## Arizona    494.2  670.8
## Arkansas   297.7  576.5
## California 772.6 1119.7
## Colorado   476.4  578.8
# PUNTO A) TASA TOTAL EN 1993:
total83 = round(sum(crime$y1983))
total83
## [1] 22313
total93 = round(sum(crime$y1993))
total93
## [1] 30948
# la tasa total en 1993 fue mayor que 1983

# PUNTO B) ESTADO CON MAYOR TASA DE CRIMENES EN CADA AÑO:
crime[crime$y1993 == max(crime$y1993),]
##     y1983  y1993
## DC 1985.4 2832.8
crime[crime$y1983 == max(crime$y1983),]
##     y1983  y1993
## DC 1985.4 2832.8
# PUNTO C) ESTADO CON MAYOR TASA DE CRIMENES ACUMULADOS:
crime["acumulado"] <- crime$y1983 + crime$y1993
crime[crime$acumulado == max(crime$acumulado),]
##     y1983  y1993 acumulado
## DC 1985.4 2832.8    4818.2
# PUNTO D) GRAFICA DEL PUNTO B:
años = c("1983","1993")
años
## [1] "1983" "1993"
datos = c(total93, total83)
datos
## [1] 30948 22313
pie(datos, años, main = "GRAFICA DE MAYOR TASA DE CRIMENES POR AÑOS",sub = "Año 1983: 1985 - Año 1993: 2833", col=c("purple", "blue"))