# Chapter 9 Code

# -------- Code Chank 1 --------
library(TSstudio)

data("USgas")

ts_plot(USgas,
        title = "US Monthly Natural Gas consumption",
        Ytitle = "Billion Cubic Feet",
        Xtitle = "Year")
# -------- Code Chank 2 --------
ts_info(USgas)
##  The USgas series is a ts object with 1 variable and 238 observations
##  Frequency: 12 
##  Start time: 2000 1 
##  End time: 2019 10
# -------- Code Chank 3 --------
ts_decompose(USgas)
# -------- Code Chank 4 --------
USgas_df <- ts_to_prophet(USgas)
# -------- Code Chank 5 --------
head(USgas_df)
##           ds      y
## 1 2000-01-01 2510.5
## 2 2000-02-01 2330.7
## 3 2000-03-01 2050.6
## 4 2000-04-01 1783.3
## 5 2000-05-01 1632.9
## 6 2000-06-01 1513.1
# -------- Code Chank 6 --------
USgas_df$trend <- 1:nrow(USgas_df)
# -------- Code Chank 7 --------
library(lubridate)
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
USgas_df$seasonal <- month(USgas_df$ds, label = T)
# -------- Code Chank 8 --------
head(USgas_df)
##           ds      y trend seasonal
## 1 2000-01-01 2510.5     1      ene
## 2 2000-02-01 2330.7     2      feb
## 3 2000-03-01 2050.6     3      mar
## 4 2000-04-01 1783.3     4      abr
## 5 2000-05-01 1632.9     5      may
## 6 2000-06-01 1513.1     6      jun
# -------- Code Chank 9 --------
h <- 12 # setting a testing partition length

train <- USgas_df[1:(nrow(USgas_df) - h), ]

test <- USgas_df[(nrow(USgas_df) - h + 1):nrow(USgas_df), ]
# -------- Code Chank 10 --------
md_trend <- lm(y ~ trend, data = train)

summary(md_trend)
## 
## Call:
## lm(formula = y ~ trend, data = train)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -547.2 -307.4 -153.2  333.1 1052.6 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1751.0074    52.6435   33.26  < 2e-16 ***
## trend          2.4489     0.4021    6.09 4.86e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 394.4 on 224 degrees of freedom
## Multiple R-squared:  0.1421, Adjusted R-squared:  0.1382 
## F-statistic: 37.09 on 1 and 224 DF,  p-value: 4.861e-09
# -------- Code Chank 11 --------
train$yhat <- predict(md_trend, newdata = train)

test$yhat <- predict(md_trend, newdata = test)
# -------- Code Chank 12 --------
library(plotly)
## Loading required package: ggplot2
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
plot_lm <- function(data, train, test, title = NULL){
  p <- plot_ly(data = data, 
               x = ~ ds, 
               y = ~ y, 
               type = "scatter",
               mode = "line",
               name = "Actual") %>%
    add_lines(x =  ~ train$ds,
              y = ~ train$yhat,
              line = list(color = "red"),
              name = "Fitted") %>%
    add_lines(x =  ~ test$ds,
              y = ~ test$yhat,
              line = list(color = "green", dash = "dot", width = 3),
              name = "Forecasted") %>%
    layout(title = title,
           xaxis = list(title = ""),
           yaxis = list(title = "Billion Cubic Feet"),
           legend = list(x = 0.05, y = 0.95))
  return(p)
}
# -------- Code Chank 13 --------
plot_lm(data = USgas_df, 
        train = train, 
        test = test,
        title = "Predicting the Trend Component of the Series")
# -------- Code Chank 14 --------
mape_trend <- c(mean(abs(train$y - train$yhat) / train$y),
                mean(abs(test$y - test$yhat) / test$y))

mape_trend
## [1] 0.1644088 0.1299951
# -------- Code Chank 15 --------
md_seasonal <- lm(y ~ seasonal, data = train)

summary(md_seasonal)
## 
## Call:
## lm(formula = y ~ seasonal, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -608.98 -162.34  -50.77  148.40  566.89 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2030.88      14.43 140.747  < 2e-16 ***
## seasonal.L   -480.00      50.24  -9.554  < 2e-16 ***
## seasonal.Q   1103.83      50.17  22.000  < 2e-16 ***
## seasonal.C     72.42      50.05   1.447 0.149389    
## seasonal^4    174.60      50.07   3.487 0.000592 ***
## seasonal^5    288.01      50.13   5.745 3.13e-08 ***
## seasonal^6    -44.67      50.09  -0.892 0.373460    
## seasonal^7   -187.91      49.96  -3.762 0.000218 ***
## seasonal^8     84.95      49.84   1.705 0.089706 .  
## seasonal^9     46.16      49.78   0.927 0.354828    
## seasonal^10    77.55      49.76   1.559 0.120587    
## seasonal^11   -11.09      49.75  -0.223 0.823856    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 216.9 on 214 degrees of freedom
## Multiple R-squared:  0.7521, Adjusted R-squared:  0.7394 
## F-statistic: 59.04 on 11 and 214 DF,  p-value: < 2.2e-16
# -------- Code Chank 16 --------
train$yhat <- predict(md_seasonal, newdata = train)
test$yhat <- predict(md_seasonal, newdata = test)

plot_lm(data = USgas_df, 
        train = train, 
        test = test,
        title = "Predicting the Seasonal Component of the Series")
# -------- Code Chank 17 --------
mape_seasonal <- c(mean(abs(train$y - train$yhat) / train$y),
                   mean(abs(test$y - test$yhat) / test$y))

mape_seasonal
## [1] 0.08628973 0.21502100
# -------- Code Chank 18 --------
md1 <- lm(y ~ seasonal + trend, data = train)

summary(md1)
## 
## Call:
## lm(formula = y ~ seasonal + trend, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -514.73  -77.17  -17.70   85.80  336.95 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1733.7153    17.0794 101.509  < 2e-16 ***
## seasonal.L  -498.1709    29.6354 -16.810  < 2e-16 ***
## seasonal.Q  1115.2951    29.5872  37.695  < 2e-16 ***
## seasonal.C    78.9835    29.5103   2.676  0.00802 ** 
## seasonal^4   175.6505    29.5196   5.950 1.09e-08 ***
## seasonal^5   285.0192    29.5568   9.643  < 2e-16 ***
## seasonal^6   -49.3611    29.5319  -1.671  0.09610 .  
## seasonal^7  -192.3050    29.4540  -6.529 4.77e-10 ***
## seasonal^8    81.8787    29.3835   2.787  0.00581 ** 
## seasonal^9    44.4849    29.3480   1.516  0.13106    
## seasonal^10   76.8636    29.3372   2.620  0.00943 ** 
## seasonal^11  -11.2755    29.3353  -0.384  0.70109    
## trend          2.6182     0.1305  20.065  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 127.9 on 213 degrees of freedom
## Multiple R-squared:  0.9142, Adjusted R-squared:  0.9094 
## F-statistic: 189.2 on 12 and 213 DF,  p-value: < 2.2e-16
# -------- Code Chank 19 --------
train$yhat <- predict(md1, newdata = train)
test$yhat <- predict(md1, newdata = test)


plot_lm(data = USgas_df, 
        train = train, 
        test = test,
        title = "Predicting the Seasonal Component of the Series")
# -------- Code Chank 20 --------
mape_md1 <- c(mean(abs(train$y - train$yhat) / train$y),
              mean(abs(test$y - test$yhat) / test$y))
mape_md1
## [1] 0.04774945 0.09143290
# -------- Code Chank 21 --------
md2 <- lm(y ~ seasonal + trend + I(trend^2), data = train)

summary(md2)
## 
## Call:
## lm(formula = y ~ seasonal + trend + I(trend^2), data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -468.47  -54.66   -2.21   63.11  294.32 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.882e+03  2.199e+01  85.568  < 2e-16 ***
## seasonal.L  -4.917e+02  2.530e+01 -19.438  < 2e-16 ***
## seasonal.Q   1.121e+03  2.525e+01  44.381  < 2e-16 ***
## seasonal.C   8.247e+01  2.518e+01   3.275  0.00123 ** 
## seasonal^4   1.763e+02  2.519e+01   6.999 3.35e-11 ***
## seasonal^5   2.835e+02  2.522e+01  11.243  < 2e-16 ***
## seasonal^6  -5.175e+01  2.520e+01  -2.054  0.04123 *  
## seasonal^7  -1.946e+02  2.513e+01  -7.741 3.97e-13 ***
## seasonal^8   8.030e+01  2.507e+01   3.203  0.00157 ** 
## seasonal^9   4.362e+01  2.504e+01   1.742  0.08293 .  
## seasonal^10  7.651e+01  2.503e+01   3.057  0.00253 ** 
## seasonal^11 -1.137e+01  2.503e+01  -0.454  0.65005    
## trend       -1.270e+00  4.472e-01  -2.840  0.00494 ** 
## I(trend^2)   1.713e-02  1.908e-03   8.977  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 109.1 on 212 degrees of freedom
## Multiple R-squared:  0.9379, Adjusted R-squared:  0.9341 
## F-statistic: 246.1 on 13 and 212 DF,  p-value: < 2.2e-16
# -------- Code Chank 22 --------
train$yhat <- predict(md2, newdata = train)
test$yhat <- predict(md2, newdata = test)


plot_lm(data = USgas_df, 
        train = train, 
        test = test,
        title = "Predicting the Seasonal Component of the Series")
mape_md2 <- c(mean(abs(train$y - train$yhat) / train$y),
              mean(abs(test$y - test$yhat) / test$y))

mape_md2
## [1] 0.03688770 0.04212618
# -------- Code Chank 23 --------
USgas_split <- ts_split(USgas, sample.out = h)

train.ts <- USgas_split$train

test.ts <- USgas_split$test
# -------- Code Chank 24 --------
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
md3 <- tslm(train.ts ~ season + trend + I(trend^2))

summary(md3)
## 
## Call:
## tslm(formula = train.ts ~ season + trend + I(trend^2))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -468.47  -54.66   -2.21   63.11  294.32 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.635e+03  3.224e+01  81.738  < 2e-16 ***
## season2     -3.004e+02  3.540e+01  -8.487 3.69e-15 ***
## season3     -4.841e+02  3.540e+01 -13.676  < 2e-16 ***
## season4     -9.128e+02  3.540e+01 -25.787  < 2e-16 ***
## season5     -1.099e+03  3.540e+01 -31.033  < 2e-16 ***
## season6     -1.118e+03  3.540e+01 -31.588  < 2e-16 ***
## season7     -9.547e+02  3.540e+01 -26.968  < 2e-16 ***
## season8     -9.322e+02  3.541e+01 -26.329  < 2e-16 ***
## season9     -1.136e+03  3.541e+01 -32.070  < 2e-16 ***
## season10    -1.046e+03  3.541e+01 -29.532  < 2e-16 ***
## season11    -8.001e+02  3.590e+01 -22.286  < 2e-16 ***
## season12    -2.618e+02  3.590e+01  -7.293 5.95e-12 ***
## trend       -1.270e+00  4.472e-01  -2.840  0.00494 ** 
## I(trend^2)   1.713e-02  1.908e-03   8.977  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 109.1 on 212 degrees of freedom
## Multiple R-squared:  0.9379, Adjusted R-squared:  0.9341 
## F-statistic: 246.1 on 13 and 212 DF,  p-value: < 2.2e-16
# -------- Code Chank 25 --------
r <- which(USgas_df$ds == as.Date("2014-01-01"))
USgas_df$s_break <- ifelse(year(USgas_df$ds) >= 2010, 1, 0)
USgas_df$s_break[r] <- 1
md3 <- tslm(USgas ~ season + trend + I(trend^2) + s_break, data = USgas_df)
summary(md3)
## 
## Call:
## tslm(formula = USgas ~ season + trend + I(trend^2) + s_break, 
##     data = USgas_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -469.25  -50.68   -2.66   63.63  275.89 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.661e+03  3.200e+01  83.164  < 2e-16 ***
## season2     -3.054e+02  3.448e+01  -8.858 2.61e-16 ***
## season3     -4.849e+02  3.448e+01 -14.062  < 2e-16 ***
## season4     -9.272e+02  3.449e+01 -26.885  < 2e-16 ***
## season5     -1.108e+03  3.449e+01 -32.114  < 2e-16 ***
## season6     -1.127e+03  3.450e+01 -32.660  < 2e-16 ***
## season7     -9.568e+02  3.450e+01 -27.730  < 2e-16 ***
## season8     -9.340e+02  3.451e+01 -27.061  < 2e-16 ***
## season9     -1.138e+03  3.452e+01 -32.972  < 2e-16 ***
## season10    -1.040e+03  3.453e+01 -30.122  < 2e-16 ***
## season11    -7.896e+02  3.497e+01 -22.577  < 2e-16 ***
## season12    -2.649e+02  3.498e+01  -7.571 9.72e-13 ***
## trend       -1.928e+00  4.479e-01  -4.304 2.51e-05 ***
## I(trend^2)   1.862e-02  1.676e-03  11.113  < 2e-16 ***
## s_break      6.060e+01  2.836e+01   2.137   0.0337 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 109 on 223 degrees of freedom
## Multiple R-squared:  0.9423, Adjusted R-squared:  0.9387 
## F-statistic: 260.3 on 14 and 223 DF,  p-value: < 2.2e-16
library(UKgrid)

UKdaily <- extract_grid(type = "data.frame",
                        columns = "ND",
                        aggregate = "daily")

head(UKdaily)
##    TIMESTAMP      ND
## 1 2005-04-01 1920069
## 2 2005-04-02 1674699
## 3 2005-04-03 1631352
## 4 2005-04-04 1916693
## 5 2005-04-05 1952082
## 6 2005-04-06 1964584
ts_plot(UKdaily,
        title = "The UK National Demand for Electricity",
        Ytitle = "MW",
        Xtitle = "Year")
# -------- Code Chank 26 --------
ts_heatmap(UKdaily[which(year(UKdaily$TIMESTAMP) >= 2016),],
           title = "UK the Daily National Grid Demand Heatmap")
# -------- Code Chank 27 --------
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
UKdaily <- UKdaily %>%
  mutate(wday = wday(TIMESTAMP, label = TRUE),
         month = month(TIMESTAMP, label = TRUE),
         lag365 = dplyr::lag(ND, 365)) %>%
  filter(!is.na(lag365)) %>%
  arrange(TIMESTAMP)
str(UKdaily)
## 'data.frame':    4939 obs. of  5 variables:
##  $ TIMESTAMP: Date, format: "2006-04-01" "2006-04-02" ...
##  $ ND       : int  1718405 1691341 1960325 2023886 2026204 2008422 1981175 1770440 1749715 2012865 ...
##  $ wday     : Ord.factor w/ 7 levels "dom\\."<"lun\\."<..: 7 1 2 3 4 5 6 7 1 2 ...
##  $ month    : Ord.factor w/ 12 levels "ene"<"feb"<"mar"<..: 4 4 4 4 4 4 4 4 4 4 ...
##  $ lag365   : int  1920069 1674699 1631352 1916693 1952082 1964584 1990895 2003982 1811436 1684720 ...
# -------- Code Chank 28 --------
start_date <- min(UKdaily$TIMESTAMP)


UK_ts <- ts(UKdaily$ND, 
            start = c(year(start_date), yday(start_date)),
            frequency = 365)

# -------- Code Chank 29 --------
h <-  365
UKpartitions <- ts_split(UK_ts, sample.out = h)
train_ts <- UKpartitions$train
test_ts <- UKpartitions$test

train_df <- UKdaily[1:(nrow(UKdaily) - h), ]
test_df <- UKdaily[(nrow(UKdaily) - h + 1):nrow(UKdaily), ]
# -------- Code Chank 30 --------
md_tslm1 <- tslm(train_ts ~ season + trend)
fc_tslm1 <- forecast(md_tslm1, h = h)
test_forecast(actual = UK_ts,
              forecast.obj = fc_tslm1,
              test = test_ts)
accuracy(fc_tslm1, test_ts)
##                         ME     RMSE       MAE        MPE     MAPE      MASE
## Training set -4.781286e-12 121551.4 100439.64 -0.5721337 6.294111 0.8418677
## Test set     -1.740215e+04 123156.6  96785.27 -1.8735336 7.160573 0.8112374
##                   ACF1 Theil's U
## Training set 0.5277884        NA
## Test set     0.5106681  1.071899
# -------- Code Chank 31 --------
md_tslm2 <- tslm(train_ts ~ season + trend + wday, data = train_df)
fc_tslm2 <- forecast(md_tslm2, h = h, newdata = test_df)
test_forecast(actual = UK_ts,
              forecast.obj = fc_tslm2,
              test = test_ts)
accuracy(fc_tslm2, test_ts)
##                         ME     RMSE      MAE        MPE     MAPE      MASE
## Training set  8.172823e-12 70245.98 52146.79 -0.1738708 3.167605 0.4370853
## Test set     -1.764563e+04 80711.71 65373.21 -1.3715505 4.682071 0.5479470
##                   ACF1 Theil's U
## Training set 0.7513664        NA
## Test set     0.6075598   0.68445
# -------- Code Chank 32 --------
md_tslm3 <- tslm(train_ts ~ season + trend + wday + month + lag365, data = train_df)
fc_tslm3 <- forecast(md_tslm3, h = h, newdata = test_df)
test_forecast(actual = UK_ts,
              forecast.obj = fc_tslm3,
              test = test_ts)
accuracy(fc_tslm3, test_ts) 
##                         ME     RMSE      MAE        MPE     MAPE      MASE
## Training set -9.836939e-13 69904.92 52006.75 -0.1717563 3.163385 0.4359116
## Test set     -1.754061e+04 81783.55 65957.66 -1.3613252 4.722083 0.5528457
##                   ACF1 Theil's U
## Training set 0.7500146        NA
## Test set     0.6094666 0.6925767
# -------- Code Chank 33 --------
summary(md_tslm3)$coefficients %>% tail(1)
##           Estimate Std. Error   t value     Pr(>|t|)
## lag365 -0.06038328 0.01545495 -3.907051 9.490321e-05
# -------- Code Chank 34 --------
anova(md_tslm3)
## Analysis of Variance Table
## 
## Response: train_ts
##             Df     Sum Sq    Mean Sq    F value    Pr(>F)    
## season     364 1.4279e+14 3.9227e+11    73.5348 < 2.2e-16 ***
## trend        1 7.2634e+13 7.2634e+13 13615.7078 < 2.2e-16 ***
## wday         6 4.5009e+13 7.5016e+12  1406.2214 < 2.2e-16 ***
## month       11 1.3721e+11 1.2473e+10     2.3382  0.007266 ** 
## lag365       1 8.1432e+10 8.1432e+10    15.2650  9.49e-05 ***
## Residuals 4190 2.2352e+13 5.3345e+09                         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# -------- Code Chank 35 --------
final_md <- tslm(UK_ts ~ season + trend + wday + month + lag365, 
                 data = UKdaily)
# -------- Code Chank 36 --------
checkresiduals(final_md)

## 
##  Breusch-Godfrey test for serial correlation of order up to 730
## 
## data:  Residuals from Linear regression model
## LM test = 3301.1, df = 730, p-value < 2.2e-16
# -------- Code Chank 37 --------
UK_fc_df <- data.frame(date = seq.Date(from = max(UKdaily$TIMESTAMP) + days(1), 
                                       by = "day", 
                                       length.out = h))
# -------- Code Chank 38 --------
UK_fc_df$wday <- factor(lubridate::wday(UK_fc_df$date, label = TRUE), ordered = FALSE)

UK_fc_df$month <- factor(month(UK_fc_df$date, label = TRUE), ordered = FALSE)

UK_fc_df$lag365 <- tail(UKdaily$ND, h)
# -------- Code Chank 39 --------
UKgrid_fc <- forecast(final_md, h = h, newdata = UK_fc_df)
# -------- Code Chank 40 --------
plot_forecast(UKgrid_fc,
              title = "The UK National Demand for Electricity Forecast",
              Ytitle = "MW",
              Xtitle = "Year")