Hola Ramón: te envio adjunto los datos que hay que agregar en el estudio de la prevalencia. Te puso mis cuadritos así te quedan mas claro. Para la regresión logística los cambios son:

load("~/Dropbox/odontologia/relevamiento/casnati/muestra_global/muestra_global.RData")

library(survey)
## 
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
##     dotchart
library(car)
## Loading required package: MASS
## Loading required package: nnet
disenio.post$variables$tabaco.rec <- recode(disenio.post$variables$tabaco, "1=0;2:4=1")
disenio.post$variables$tabaco.rec <- as.factor(disenio.post$variables$tabaco.rec)
disenio.post$variables$Sit_protesis.rec <- recode(disenio.post$variables$Sit_protesis, 
    "'Completa'='2-Completa-PPR';'PPR'='2-Completa-PPR';'Resto'='1-Resto';'Sin_prote'='0-Sin_prote'")
levels(disenio.post$variables$Sit_protesis.rec)
## [1] "0-Sin_prote"    "1-Resto"        "2-Completa-PPR"
disenio.post$variables$alcohol.rec <- recode(disenio.post$variables$alcohol, 
    "1=0;2:4=1")

#Genero, Edad,INSE,Tabaco,mate,alcohol, frutasyverduras,protesis


library(survey)
svychisq(~Prev.lesio.rec + sexo, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio.rec + sexo, disenio.post, statistic = "Wald") 
## F = 1.285, ndf = 1, ddf = 1475, p-value = 0.2571

modelo.bin1 <- svyglm(factor(Prev.lesio.rec) ~ sexo, design = disenio.post, 
    family = quasibinomial())

summary(modelo.bin1)
## 
## Call:
## svyglm(formula = factor(Prev.lesio.rec) ~ sexo, design = disenio.post, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio, ~mue_eta_sex, tabla.pob)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -2.104      0.145  -14.47   <2e-16 ***
## sexoM         -0.265      0.239   -1.11     0.27    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo.bin1)
##               2.5 %  97.5 %
## (Intercept) -2.3890 -1.8192
## sexoM       -0.7334  0.2026
exp(modelo.bin1$coefficients)
## (Intercept)       sexoM 
##      0.1220      0.7669
reporte <- data.frame(modelo.bin1$coefficients, exp(modelo.bin1$coefficients))
colnames(reporte) <- c("coef", "OR")
reporte
##                coef     OR
## (Intercept) -2.1041 0.1220
## sexoM       -0.2654 0.7669

svychisq(~Prev.lesio.rec + tramo_eta, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio.rec + tramo_eta, disenio.post, statistic = "Wald") 
## F = 15.1, ndf = 2, ddf = 1475, p-value = 3.211e-07
modelo.bin2 <- svyglm(factor(Prev.lesio.rec) ~ tramo_eta, design = disenio.post, 
    family = quasibinomial())

summary(modelo.bin2)
## 
## Call:
## svyglm(formula = factor(Prev.lesio.rec) ~ tramo_eta, design = disenio.post, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio, ~mue_eta_sex, tabla.pob)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -3.007      0.232  -12.97  < 2e-16 ***
## tramo_etaE2    1.032      0.324    3.19   0.0015 ** 
## tramo_etaE3    1.347      0.273    4.94  8.7e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo.bin2)
##               2.5 % 97.5 %
## (Intercept) -3.4615 -2.553
## tramo_etaE2  0.3976  1.667
## tramo_etaE3  0.8127  1.881
exp(modelo.bin2$coefficients)
## (Intercept) tramo_etaE2 tramo_etaE3 
##     0.04943     2.80773     3.84616
reporte <- data.frame(modelo.bin2$coefficients, exp(modelo.bin2$coefficients))
colnames(reporte) <- c("coef", "OR")
reporte
##               coef      OR
## (Intercept) -3.007 0.04943
## tramo_etaE2  1.032 2.80773
## tramo_etaE3  1.347 3.84616

svychisq(~Prev.lesio.rec + INSE1, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio.rec + INSE1, disenio.post, statistic = "Wald") 
## F = 13.75, ndf = 2, ddf = 1475, p-value = 1.21e-06
modelo.bin3 <- svyglm(factor(Prev.lesio.rec) ~ INSE1, design = disenio.post, 
    family = quasibinomial())

summary(modelo.bin3)
## 
## Call:
## svyglm(formula = factor(Prev.lesio.rec) ~ INSE1, design = disenio.post, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio, ~mue_eta_sex, tabla.pob)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -1.897      0.160  -11.89   <2e-16 ***
## INSE12-MEDIO   -0.599      0.234   -2.56   0.0106 *  
## INSE13-ALTO    -3.344      1.027   -3.26   0.0012 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 7
confint(modelo.bin3)
##               2.5 % 97.5 %
## (Intercept)  -2.210 -1.584
## INSE12-MEDIO -1.057 -0.140
## INSE13-ALTO  -5.357 -1.331
exp(modelo.bin3$coefficients)
##  (Intercept) INSE12-MEDIO  INSE13-ALTO 
##       0.1500       0.5495       0.0353
reporte <- data.frame(modelo.bin3$coefficients, exp(modelo.bin3$coefficients))
colnames(reporte) <- c("coef", "OR")
reporte
##                 coef     OR
## (Intercept)  -1.8972 0.1500
## INSE12-MEDIO -0.5987 0.5495
## INSE13-ALTO  -3.3440 0.0353

svychisq(~Prev.lesio.rec + tabaco.rec, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio.rec + tabaco.rec, disenio.post, statistic = "Wald") 
## F = 1.094, ndf = 1, ddf = 1475, p-value = 0.2958
modelo.bin4 <- svyglm(factor(Prev.lesio.rec) ~ factor(tabaco.rec), design = disenio.post, 
    family = quasibinomial())

summary(modelo.bin4)
## 
## Call:
## svyglm(formula = factor(Prev.lesio.rec) ~ factor(tabaco.rec), 
##     design = disenio.post, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio, ~mue_eta_sex, tabla.pob)
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -2.151      0.131  -16.47   <2e-16 ***
## factor(tabaco.rec)1   -0.291      0.298   -0.98     0.33    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9934)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo.bin4)
##                       2.5 % 97.5 %
## (Intercept)         -2.4071 -1.895
## factor(tabaco.rec)1 -0.8749  0.292
regTermTest(modelo.bin4, "factor(tabaco.rec)")
## Wald test for factor(tabaco.rec)
##  in svyglm(formula = factor(Prev.lesio.rec) ~ factor(tabaco.rec), 
##     design = disenio.post, family = quasibinomial())
## F =  0.9584  on  1  and  1465  df: p= 0.33
exp(modelo.bin4$coefficients)
##         (Intercept) factor(tabaco.rec)1 
##              0.1164              0.7472
reporte <- data.frame(modelo.bin4$coefficients, exp(modelo.bin4$coefficients))
colnames(reporte) <- c("coef", "OR")
reporte
##                        coef     OR
## (Intercept)         -2.1511 0.1164
## factor(tabaco.rec)1 -0.2914 0.7472

svychisq(~Prev.lesio.rec + n5consumem, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio.rec + n5consumem, disenio.post, statistic = "Wald") 
## F = 3.167, ndf = 1, ddf = 1475, p-value = 0.07532
modelo.bin5 <- svyglm(factor(Prev.lesio.rec) ~ n5consumem, design = disenio.post, 
    family = quasibinomial())

summary(modelo.bin5)
## 
## Call:
## svyglm(formula = factor(Prev.lesio.rec) ~ n5consumem, design = disenio.post, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio, ~mue_eta_sex, tabla.pob)
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                -2.133      0.133  -16.06   <2e-16 ***
## n5consumem2-No toma mate   -0.456      0.277   -1.65      0.1    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9977)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo.bin5)
##                            2.5 %  97.5 %
## (Intercept)              -2.3933 -1.8728
## n5consumem2-No toma mate -0.9984  0.0871
exp(modelo.bin5$coefficients)
##              (Intercept) n5consumem2-No toma mate 
##                   0.1185                   0.6340
reporte <- data.frame(modelo.bin5$coefficients, exp(modelo.bin5$coefficients))
colnames(reporte) <- c("coef", "OR")
reporte
##                             coef     OR
## (Intercept)              -2.1330 0.1185
## n5consumem2-No toma mate -0.4556 0.6340

svychisq(~Prev.lesio.rec + alcohol.rec, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio.rec + alcohol.rec, disenio.post, statistic = "Wald") 
## F = 4.024, ndf = 1, ddf = 1475, p-value = 0.04504
modelo.bin6 <- svyglm(factor(Prev.lesio.rec) ~ alcohol.rec, design = disenio.post, 
    family = quasibinomial())

summary(modelo.bin6)
## 
## Call:
## svyglm(formula = factor(Prev.lesio.rec) ~ alcohol.rec, design = disenio.post, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio, ~mue_eta_sex, tabla.pob)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -1.879      0.188   -9.97   <2e-16 ***
## alcohol.rec1   -0.523      0.241   -2.17     0.03 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9952)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo.bin6)
##               2.5 %  97.5 %
## (Intercept)  -2.248 -1.5097
## alcohol.rec1 -0.996 -0.0503
exp(modelo.bin6$coefficients)
##  (Intercept) alcohol.rec1 
##       0.1528       0.5927
reporte <- data.frame(modelo.bin6$coefficients, exp(modelo.bin6$coefficients))
colnames(reporte) <- c("coef", "OR")
reporte
##                 coef     OR
## (Intercept)  -1.8789 0.1528
## alcohol.rec1 -0.5231 0.5927

svy(~Prev.lesio.rec + frutas_verduras, disenio.post, statistic = "Wald")
## Error: could not find function "svy"

modelo.bin7 <- svyglm(factor(Prev.lesio.rec) ~ frutas_verduras, design = disenio.post, 
    family = quasibinomial())

summary(modelo.bin7)
## 
## Call:
## svyglm(formula = factor(Prev.lesio.rec) ~ frutas_verduras, design = disenio.post, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio, ~mue_eta_sex, tabla.pob)
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -2.3443     0.1890  -12.40   <2e-16 ***
## frutas_verduras   0.0527     0.0678    0.78     0.44    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9892)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo.bin7)
##                    2.5 %  97.5 %
## (Intercept)     -2.71478 -1.9738
## frutas_verduras -0.08028  0.1856
exp(modelo.bin7$coefficients)
##     (Intercept) frutas_verduras 
##         0.09592         1.05409
reporte <- data.frame(modelo.bin7$coefficients, exp(modelo.bin7$coefficients))
colnames(reporte) <- c("coef", "OR")
reporte
##                     coef      OR
## (Intercept)     -2.34428 0.09592
## frutas_verduras  0.05268 1.05409



svychisq(~Prev.lesio.rec + Sit_protesis.rec, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio.rec + Sit_protesis.rec, disenio.post, statistic = "Wald") 
## F = 17.94, ndf = 2, ddf = 1475, p-value = 1.996e-08
modelo.bin8 <- svyglm(factor(Prev.lesio.rec) ~ Sit_protesis.rec, design = disenio.post, 
    family = quasibinomial())

summary(modelo.bin8)
## 
## Call:
## svyglm(formula = factor(Prev.lesio.rec) ~ Sit_protesis.rec, design = disenio.post, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio, ~mue_eta_sex, tabla.pob)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      -2.967      0.200  -14.86  < 2e-16 ***
## Sit_protesis.rec1-Resto           0.573      0.587    0.98     0.33    
## Sit_protesis.rec2-Completa-PPR    1.772      0.254    6.98  4.6e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9928)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo.bin8)
##                                 2.5 % 97.5 %
## (Intercept)                    -3.359 -2.576
## Sit_protesis.rec1-Resto        -0.578  1.724
## Sit_protesis.rec2-Completa-PPR  1.274  2.270
exp(modelo.bin8$coefficients)
##                    (Intercept)        Sit_protesis.rec1-Resto 
##                        0.05144                        1.77390 
## Sit_protesis.rec2-Completa-PPR 
##                        5.88194
reporte <- data.frame(modelo.bin8$coefficients, exp(modelo.bin8$coefficients))
colnames(reporte) <- c("coef", "OR")
reporte
##                                   coef      OR
## (Intercept)                    -2.9674 0.05144
## Sit_protesis.rec1-Resto         0.5732 1.77390
## Sit_protesis.rec2-Completa-PPR  1.7719 5.88194

svychisq(~Prev.lesio.rec + perio.rec, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio.rec + perio.rec, disenio.post, statistic = "Wald") 
## F = 8.555, ndf = 3, ddf = 1475, p-value = 1.242e-05
modelo.bin9 <- svyglm(factor(Prev.lesio.rec) ~ perio.rec, design = disenio.post, 
    family = quasibinomial())

summary(modelo.bin9)
## 
## Call:
## svyglm(formula = factor(Prev.lesio.rec) ~ perio.rec, design = disenio.post, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio, ~mue_eta_sex, tabla.pob)
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -2.7563     0.1884  -14.63   <2e-16 ***
## perio.rec2-leve-moderada   0.0891     0.4059    0.22     0.83    
## perio.rec3-grave          -0.1809     0.5608   -0.32     0.75    
## perio.rec4-desdentada      1.6038     0.2584    6.21    7e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo.bin9)
##                            2.5 %  97.5 %
## (Intercept)              -3.1257 -2.3870
## perio.rec2-leve-moderada -0.7064  0.8845
## perio.rec3-grave         -1.2802  0.9183
## perio.rec4-desdentada     1.0973  2.1102
exp(modelo.bin9$coefficients)
##              (Intercept) perio.rec2-leve-moderada         perio.rec3-grave 
##                  0.06352                  1.09315                  0.83450 
##    perio.rec4-desdentada 
##                  4.97168
reporte <- data.frame(modelo.bin9$coefficients, exp(modelo.bin9$coefficients))
colnames(reporte) <- c("coef", "OR")
reporte
##                              coef      OR
## (Intercept)              -2.75634 0.06352
## perio.rec2-leve-moderada  0.08907 1.09315
## perio.rec3-grave         -0.18092 0.83450
## perio.rec4-desdentada     1.60376 4.97168