library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.3     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
museums <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-11-22/museums.csv')
## Rows: 4191 Columns: 35
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (24): museum_id, Name_of_museum, Address_line_1, Address_line_2, Village...
## dbl (11): Latitude, Longitude, DOMUS_identifier, Area_Deprivation_index, Are...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
museums %>%
  count(Accreditation)
## # A tibble: 2 × 2
##   Accreditation     n
##   <chr>         <int>
## 1 Accredited     1720
## 2 Unaccredited   2471
top_subjects <- museums %>% 
    count(Subject_Matter, sort = TRUE) %>% 
    slice_max(n, n = 6) %>% 
    pull(Subject_Matter)

museums %>% 
    filter(Subject_Matter %in% top_subjects) %>% 
    count(Subject_Matter, Accreditation) %>% 
    ggplot(aes(Accreditation, n, fill = Accreditation)) + 
    geom_col(show.legend = FALSE) + 
    facet_wrap(vars(Subject_Matter), scales = "free")

museums %>% 
    count(Accreditation, Size)
## # A tibble: 10 × 3
##    Accreditation Size        n
##    <chr>         <chr>   <int>
##  1 Accredited    huge       11
##  2 Accredited    large     402
##  3 Accredited    medium    644
##  4 Accredited    small     650
##  5 Accredited    unknown    13
##  6 Unaccredited  huge        1
##  7 Unaccredited  large     142
##  8 Unaccredited  medium    381
##  9 Unaccredited  small    1751
## 10 Unaccredited  unknown   196
top_gov <- museums %>% 
    count(Governance, sort = TRUE) %>% 
    slice_max(n, n = 4) %>% 
    pull(Governance)

museums %>% 
    filter(Governance %in% top_gov) %>% 
    count(Governance, Accreditation) %>% 
    ggplot(aes(Accreditation, n, fill = Accreditation)) + 
    geom_col(show.legend = FALSE) + 
    facet_wrap(vars(Governance), scales = "free_y")

museum_parsed <- museums %>% 
    select(museum_id, Accreditation, Governance, Size, Subject_Matter, Year_opened, Year_closed, Area_Deprivation_index) %>% 
    mutate(Year_opened = parse_number(Year_opened), 
              Closed = if_else(Year_closed == "9999:9999", "Open", "Closed")) %>% 
    select(-Year_closed) %>% 
    na.omit() %>% 
    mutate_if(is.character, as.factor) %>% 
    mutate(museum_id = as.character(museum_id))

Feature engineering

library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom        1.0.5     ✔ rsample      1.2.0
## ✔ dials        1.2.0     ✔ tune         1.1.2
## ✔ infer        1.0.5     ✔ workflows    1.1.3
## ✔ modeldata    1.2.0     ✔ workflowsets 1.0.1
## ✔ parsnip      1.1.1     ✔ yardstick    1.2.0
## ✔ recipes      1.0.8
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Use tidymodels_prefer() to resolve common conflicts.
set.seed(123)
museum_split <- initial_split(museum_parsed, strata = Accreditation)
museum_train <- training(museum_split)
museum_test <- testing(museum_split)

set.seed(234)
museum_folds <- vfold_cv(museum_train, strata = Accreditation)
museum_folds
## #  10-fold cross-validation using stratification 
## # A tibble: 10 × 2
##    splits             id    
##    <list>             <chr> 
##  1 <split [2795/311]> Fold01
##  2 <split [2795/311]> Fold02
##  3 <split [2795/311]> Fold03
##  4 <split [2795/311]> Fold04
##  5 <split [2795/311]> Fold05
##  6 <split [2795/311]> Fold06
##  7 <split [2795/311]> Fold07
##  8 <split [2796/310]> Fold08
##  9 <split [2796/310]> Fold09
## 10 <split [2797/309]> Fold10
library(embed)

museum_rec <- 
    recipe(Accreditation ~ ., data = museum_train) %>% 
    update_role(museum_id, new_role = "id") %>% 
    step_lencode_glm(Subject_Matter, outcome = vars(Accreditation)) %>%     step_dummy(all_nominal_predictors())

museum_rec
## 
## ── Recipe ──────────────────────────────────────────────────────────────────────
## 
## ── Inputs
## Number of variables by role
## outcome:   1
## predictor: 6
## id:        1
## 
## ── Operations
## • Linear embedding for factors via GLM for: Subject_Matter
## • Dummy variables from: all_nominal_predictors()
prep(museum_rec) %>%
  tidy(number = 1) %>%
  filter(level == "..new")
## # A tibble: 1 × 4
##   level  value terms          id               
##   <chr>  <dbl> <chr>          <chr>            
## 1 ..new -0.909 Subject_Matter lencode_glm_kFEsv

Build a model

xgb_spec <- 
    boost_tree(
        trees = tune(),
        min_n = tune(), 
        mtry = tune(), 
        learn_rate = 0.01) %>% 
    set_engine("xgboost") %>% 
    set_mode("classification")

xgb_wf <- workflow(museum_rec, xgb_spec)
library(finetune)
doParallel::registerDoParallel()

set.seed(345)
xgb_rs <- tune_race_anova(
  xgb_wf,
  resamples = museum_folds,
  grid = 15,
  control = control_race(verbose_elim = TRUE)
)
## i Creating pre-processing data to finalize unknown parameter: mtry
## ℹ Racing will maximize the roc_auc metric.
## ℹ Resamples are analyzed in a random order.
## ℹ Fold10: 10 eliminated; 5 candidates remain.
## 
## ℹ Fold07: All but one parameter combination were eliminated.
xgb_rs
## # Tuning results
## # 10-fold cross-validation using stratification 
## # A tibble: 10 × 5
##    splits             id     .order .metrics          .notes          
##    <list>             <chr>   <int> <list>            <list>          
##  1 <split [2795/311]> Fold01      2 <tibble [30 × 7]> <tibble [0 × 3]>
##  2 <split [2795/311]> Fold02      3 <tibble [30 × 7]> <tibble [0 × 3]>
##  3 <split [2797/309]> Fold10      1 <tibble [30 × 7]> <tibble [0 × 3]>
##  4 <split [2795/311]> Fold07      4 <tibble [10 × 7]> <tibble [0 × 3]>
##  5 <split [2795/311]> Fold03      5 <tibble [2 × 7]>  <tibble [0 × 3]>
##  6 <split [2795/311]> Fold04      8 <tibble [2 × 7]>  <tibble [0 × 3]>
##  7 <split [2795/311]> Fold05      6 <tibble [2 × 7]>  <tibble [0 × 3]>
##  8 <split [2795/311]> Fold06      9 <tibble [2 × 7]>  <tibble [0 × 3]>
##  9 <split [2796/310]> Fold08     10 <tibble [2 × 7]>  <tibble [0 × 3]>
## 10 <split [2796/310]> Fold09      7 <tibble [2 × 7]>  <tibble [0 × 3]>
plot_race(xgb_rs)

collect_metrics(xgb_rs)
## # A tibble: 2 × 9
##    mtry trees min_n .metric  .estimator  mean     n std_err .config             
##   <int> <int> <int> <chr>    <chr>      <dbl> <int>   <dbl> <chr>               
## 1     2   599     8 accuracy binary     0.797    10 0.00791 Preprocessor1_Model…
## 2     2   599     8 roc_auc  binary     0.885    10 0.00549 Preprocessor1_Model…
xgb_last <- xgb_wf %>%
  finalize_workflow(select_best(xgb_rs, "accuracy")) %>%
  last_fit(museum_split)

xgb_last
## # Resampling results
## # Manual resampling 
## # A tibble: 1 × 6
##   splits              id               .metrics .notes   .predictions .workflow 
##   <list>              <chr>            <list>   <list>   <list>       <list>    
## 1 <split [3106/1036]> train/test split <tibble> <tibble> <tibble>     <workflow>
collect_metrics(xgb_last)
## # A tibble: 2 × 4
##   .metric  .estimator .estimate .config             
##   <chr>    <chr>          <dbl> <chr>               
## 1 accuracy binary         0.810 Preprocessor1_Model1
## 2 roc_auc  binary         0.891 Preprocessor1_Model1
collect_predictions(xgb_last) %>% 
    conf_mat(Accreditation, .pred_class)
##               Truth
## Prediction     Accredited Unaccredited
##   Accredited          353          120
##   Unaccredited         77          486
library(vip)
## 
## Attaching package: 'vip'
## The following object is masked from 'package:utils':
## 
##     vi
xgb_last %>%
  extract_fit_engine() %>%
  vip()

1. What is the research question?

#2. Data Exploration and Transformation: - The newly transformed data has a new open/closed variable data, cut out unnecessary data for the analysis such as lat/long and more, changed character datra to factor and omitted NA’s.

3. Data Preparation and Modeling:

- There were a few steps made in this data prep and modeling section that include: update_role(update_role which turns the id into an identifier instead of data used in the modeling), step_lencode_glm(creates a specification of a recipe step that convers nominal predictors into a single set of scores form a linear model), and step_dummy(creates a specification of a recipe step that converts nominal data into numeric binary terms). 

#4. Model Evaluation: - Looking at the confusion matrix and plot brace, we can see that the model did a good job of predicting the outcome.

5. Conclusion: