library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.3 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
museums <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-11-22/museums.csv')
## Rows: 4191 Columns: 35
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (24): museum_id, Name_of_museum, Address_line_1, Address_line_2, Village...
## dbl (11): Latitude, Longitude, DOMUS_identifier, Area_Deprivation_index, Are...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
museums %>%
count(Accreditation)
## # A tibble: 2 × 2
## Accreditation n
## <chr> <int>
## 1 Accredited 1720
## 2 Unaccredited 2471
top_subjects <- museums %>%
count(Subject_Matter, sort = TRUE) %>%
slice_max(n, n = 6) %>%
pull(Subject_Matter)
museums %>%
filter(Subject_Matter %in% top_subjects) %>%
count(Subject_Matter, Accreditation) %>%
ggplot(aes(Accreditation, n, fill = Accreditation)) +
geom_col(show.legend = FALSE) +
facet_wrap(vars(Subject_Matter), scales = "free")
museums %>%
count(Accreditation, Size)
## # A tibble: 10 × 3
## Accreditation Size n
## <chr> <chr> <int>
## 1 Accredited huge 11
## 2 Accredited large 402
## 3 Accredited medium 644
## 4 Accredited small 650
## 5 Accredited unknown 13
## 6 Unaccredited huge 1
## 7 Unaccredited large 142
## 8 Unaccredited medium 381
## 9 Unaccredited small 1751
## 10 Unaccredited unknown 196
top_gov <- museums %>%
count(Governance, sort = TRUE) %>%
slice_max(n, n = 4) %>%
pull(Governance)
museums %>%
filter(Governance %in% top_gov) %>%
count(Governance, Accreditation) %>%
ggplot(aes(Accreditation, n, fill = Accreditation)) +
geom_col(show.legend = FALSE) +
facet_wrap(vars(Governance), scales = "free_y")
museum_parsed <- museums %>%
select(museum_id, Accreditation, Governance, Size, Subject_Matter, Year_opened, Year_closed, Area_Deprivation_index) %>%
mutate(Year_opened = parse_number(Year_opened),
Closed = if_else(Year_closed == "9999:9999", "Open", "Closed")) %>%
select(-Year_closed) %>%
na.omit() %>%
mutate_if(is.character, as.factor) %>%
mutate(museum_id = as.character(museum_id))
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom 1.0.5 ✔ rsample 1.2.0
## ✔ dials 1.2.0 ✔ tune 1.1.2
## ✔ infer 1.0.5 ✔ workflows 1.1.3
## ✔ modeldata 1.2.0 ✔ workflowsets 1.0.1
## ✔ parsnip 1.1.1 ✔ yardstick 1.2.0
## ✔ recipes 1.0.8
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ recipes::fixed() masks stringr::fixed()
## ✖ dplyr::lag() masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step() masks stats::step()
## • Use tidymodels_prefer() to resolve common conflicts.
set.seed(123)
museum_split <- initial_split(museum_parsed, strata = Accreditation)
museum_train <- training(museum_split)
museum_test <- testing(museum_split)
set.seed(234)
museum_folds <- vfold_cv(museum_train, strata = Accreditation)
museum_folds
## # 10-fold cross-validation using stratification
## # A tibble: 10 × 2
## splits id
## <list> <chr>
## 1 <split [2795/311]> Fold01
## 2 <split [2795/311]> Fold02
## 3 <split [2795/311]> Fold03
## 4 <split [2795/311]> Fold04
## 5 <split [2795/311]> Fold05
## 6 <split [2795/311]> Fold06
## 7 <split [2795/311]> Fold07
## 8 <split [2796/310]> Fold08
## 9 <split [2796/310]> Fold09
## 10 <split [2797/309]> Fold10
library(embed)
museum_rec <-
recipe(Accreditation ~ ., data = museum_train) %>%
update_role(museum_id, new_role = "id") %>%
step_lencode_glm(Subject_Matter, outcome = vars(Accreditation)) %>% step_dummy(all_nominal_predictors())
museum_rec
##
## ── Recipe ──────────────────────────────────────────────────────────────────────
##
## ── Inputs
## Number of variables by role
## outcome: 1
## predictor: 6
## id: 1
##
## ── Operations
## • Linear embedding for factors via GLM for: Subject_Matter
## • Dummy variables from: all_nominal_predictors()
prep(museum_rec) %>%
tidy(number = 1) %>%
filter(level == "..new")
## # A tibble: 1 × 4
## level value terms id
## <chr> <dbl> <chr> <chr>
## 1 ..new -0.909 Subject_Matter lencode_glm_kFEsv
xgb_spec <-
boost_tree(
trees = tune(),
min_n = tune(),
mtry = tune(),
learn_rate = 0.01) %>%
set_engine("xgboost") %>%
set_mode("classification")
xgb_wf <- workflow(museum_rec, xgb_spec)
library(finetune)
doParallel::registerDoParallel()
set.seed(345)
xgb_rs <- tune_race_anova(
xgb_wf,
resamples = museum_folds,
grid = 15,
control = control_race(verbose_elim = TRUE)
)
## i Creating pre-processing data to finalize unknown parameter: mtry
## ℹ Racing will maximize the roc_auc metric.
## ℹ Resamples are analyzed in a random order.
## ℹ Fold10: 10 eliminated; 5 candidates remain.
##
## ℹ Fold07: All but one parameter combination were eliminated.
xgb_rs
## # Tuning results
## # 10-fold cross-validation using stratification
## # A tibble: 10 × 5
## splits id .order .metrics .notes
## <list> <chr> <int> <list> <list>
## 1 <split [2795/311]> Fold01 2 <tibble [30 × 7]> <tibble [0 × 3]>
## 2 <split [2795/311]> Fold02 3 <tibble [30 × 7]> <tibble [0 × 3]>
## 3 <split [2797/309]> Fold10 1 <tibble [30 × 7]> <tibble [0 × 3]>
## 4 <split [2795/311]> Fold07 4 <tibble [10 × 7]> <tibble [0 × 3]>
## 5 <split [2795/311]> Fold03 5 <tibble [2 × 7]> <tibble [0 × 3]>
## 6 <split [2795/311]> Fold04 8 <tibble [2 × 7]> <tibble [0 × 3]>
## 7 <split [2795/311]> Fold05 6 <tibble [2 × 7]> <tibble [0 × 3]>
## 8 <split [2795/311]> Fold06 9 <tibble [2 × 7]> <tibble [0 × 3]>
## 9 <split [2796/310]> Fold08 10 <tibble [2 × 7]> <tibble [0 × 3]>
## 10 <split [2796/310]> Fold09 7 <tibble [2 × 7]> <tibble [0 × 3]>
plot_race(xgb_rs)
collect_metrics(xgb_rs)
## # A tibble: 2 × 9
## mtry trees min_n .metric .estimator mean n std_err .config
## <int> <int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 2 599 8 accuracy binary 0.797 10 0.00791 Preprocessor1_Model…
## 2 2 599 8 roc_auc binary 0.885 10 0.00549 Preprocessor1_Model…
xgb_last <- xgb_wf %>%
finalize_workflow(select_best(xgb_rs, "accuracy")) %>%
last_fit(museum_split)
xgb_last
## # Resampling results
## # Manual resampling
## # A tibble: 1 × 6
## splits id .metrics .notes .predictions .workflow
## <list> <chr> <list> <list> <list> <list>
## 1 <split [3106/1036]> train/test split <tibble> <tibble> <tibble> <workflow>
collect_metrics(xgb_last)
## # A tibble: 2 × 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 accuracy binary 0.810 Preprocessor1_Model1
## 2 roc_auc binary 0.891 Preprocessor1_Model1
collect_predictions(xgb_last) %>%
conf_mat(Accreditation, .pred_class)
## Truth
## Prediction Accredited Unaccredited
## Accredited 353 120
## Unaccredited 77 486
library(vip)
##
## Attaching package: 'vip'
## The following object is masked from 'package:utils':
##
## vi
xgb_last %>%
extract_fit_engine() %>%
vip()
#2. Data Exploration and Transformation: - The newly transformed data has a new open/closed variable data, cut out unnecessary data for the analysis such as lat/long and more, changed character datra to factor and omitted NA’s.
- There were a few steps made in this data prep and modeling section that include: update_role(update_role which turns the id into an identifier instead of data used in the modeling), step_lencode_glm(creates a specification of a recipe step that convers nominal predictors into a single set of scores form a linear model), and step_dummy(creates a specification of a recipe step that converts nominal data into numeric binary terms).
#4. Model Evaluation: - Looking at the confusion matrix and plot brace, we can see that the model did a good job of predicting the outcome.