The iris dataset is a built-in dataset in R that contains measurements on 4 different attributes (in centimeters) for 50 flowers from 3 different species.
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
#Provides the summary of the given dataset
data=iris
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
str(data)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.3
ggplot(data=iris)+labs(title="Iris Data Plot")
ggplot(data = iris, aes(x = Petal.Length, y = Petal.Width, col = Sepal.Length))+labs(title = "Iris Data Plot")
ggplot(data = iris, aes(x = Petal.Length, y = Petal.Width, col = Sepal.Length)) +
geom_point() +
labs(title = "Petal Width vs Petal Length", x = "Petal Length", y = "Petal Width")
ggplot(data = iris, aes(x = Petal.Length, y = Petal.Width, size = Sepal.Length)) +
geom_point() +
labs(title = " Petal Width vs Petal Length", x = " Petal Length", y = " Petal Width")
ggplot(data = iris, aes(x = Petal.Length, y = Petal.Width, col=factor(Sepal.Length), shape = factor( Sepal.Width))) +
geom_point() +
labs(title = " Petal Width vs Petal Length", x = " Petal Length", y = " Petal Width")
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 23. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 126 rows containing missing values (`geom_point()`).
iris$Species<-factor(iris$Species)
ggplot(iris, aes(x = factor(Species), y = Petal.Length)) +
geom_point()
ggplot(data = iris, aes(x = Petal.Length)) +
geom_histogram(binwidth = 6,color="black", fill="purple") +
labs(title = "Histogram of Petal.Length", x = " Petal.Length", y = "Count")
ggplot(data = iris, aes(x=as.factor(Species), fill=Species)) +
geom_bar(stat="count")
Species.type = table(iris$Species)
PetalLength.Species = table(iris$ Petal.Length, iris$Species)
barplot(Species.type, main="Species Frequency", xlab="Species",ylab="Frequency of Species",names.arg=names(Species.type),col=c("skyblue","lightgreen","orange"),legend = rownames( PetalLength.Species))
Length = table(iris$Species)
data.labels = names(Length)
share = round(Length/sum(Length)*100)
data.labels = paste(data.labels, share)
data.labels = paste(data.labels,"%",sep="")
pie(Length,labels = data.labels,clockwise=TRUE, col=heat.colors(length(data.labels)), main="Frequency of Species")
bx <- ggplot(data = iris, aes(x = factor(Species), y = Petal.Width )) +
geom_boxplot(fill = "purple") +
ggtitle("Distribution of Sepal Length") +
ylab("Width") +
xlab("Length")
bx
Model <- lm( Petal.Length ~ Sepal.Length, data = iris)
iris$Species <- as.factor(iris$Sepal.Length)
plot(iris$Sepal.Length, iris$ Petal.Length, col = iris$Species)
abline(Model, lty = 2)
ggplot(iris, aes(x = as.factor(Species), y = Petal.Width, col = Species)) +
geom_jitter() +
facet_grid(. ~ Species)
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.