R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

data=read.csv("C:/Users/java/Downloads/Book1.csv")

##Summary

summary(data)
##   track_name        artist.s._name      artist_count   released_year 
##  Length:167         Length:167         Min.   :1.000   Min.   :1975  
##  Class :character   Class :character   1st Qu.:1.000   1st Qu.:2018  
##  Mode  :character   Mode  :character   Median :1.000   Median :2022  
##                                        Mean   :1.587   Mean   :2019  
##                                        3rd Qu.:2.000   3rd Qu.:2023  
##                                        Max.   :8.000   Max.   :2023  
##  released_month    released_day   in_spotify_playlists in_spotify_charts
##  Min.   : 1.000   Min.   : 1.00   Min.   :   31        Min.   :  6.00   
##  1st Qu.: 3.000   1st Qu.: 6.00   1st Qu.:  872        1st Qu.: 24.50   
##  Median : 5.000   Median :14.00   Median : 2988        Median : 38.00   
##  Mean   : 5.419   Mean   :14.07   Mean   : 6878        Mean   : 42.68   
##  3rd Qu.: 7.000   3rd Qu.:22.00   3rd Qu.: 8477        3rd Qu.: 52.50   
##  Max.   :12.000   Max.   :31.00   Max.   :43899        Max.   :147.00   
##     streams          in_apple_playlists in_apple_charts in_deezer_playlists
##  Min.   :2.762e+03   Min.   :  0.00     Min.   :  0.0   Length:167         
##  1st Qu.:1.208e+08   1st Qu.: 21.50     1st Qu.: 69.0   Class :character   
##  Median :4.117e+08   Median : 60.00     Median :105.0   Mode  :character   
##  Mean   :7.171e+08   Mean   : 94.52     Mean   :100.4                      
##  3rd Qu.:1.113e+09   3rd Qu.:110.00     3rd Qu.:124.5                      
##  Max.   :3.704e+09   Max.   :672.00     Max.   :263.0                      
##  in_deezer_charts in_shazam_charts        bpm            key           
##  Min.   : 0.000   Length:167         Min.   : 67.0   Length:167        
##  1st Qu.: 1.000   Class :character   1st Qu.:103.0   Class :character  
##  Median : 4.000   Mode  :character   Median :125.0   Mode  :character  
##  Mean   : 7.976                      Mean   :125.6                     
##  3rd Qu.:12.000                      3rd Qu.:140.0                     
##  Max.   :58.000                      Max.   :206.0                     
##      mode           danceability_.    valence_.        energy_.    
##  Length:167         Min.   :34.00   Min.   :10.00   Min.   : 9.00  
##  Class :character   1st Qu.:56.00   1st Qu.:36.00   1st Qu.:58.50  
##  Mode  :character   Median :67.00   Median :52.00   Median :68.00  
##                     Mean   :66.99   Mean   :53.47   Mean   :66.76  
##                     3rd Qu.:78.00   3rd Qu.:72.50   3rd Qu.:77.50  
##                     Max.   :93.00   Max.   :96.00   Max.   :97.00  
##  acousticness_.  instrumentalness_.   liveness_.    speechiness_.   
##  Min.   : 0.00   Min.   : 0.000     Min.   : 3.00   Min.   : 2.000  
##  1st Qu.: 6.00   1st Qu.: 0.000     1st Qu.:10.00   1st Qu.: 4.000  
##  Median :16.00   Median : 0.000     Median :12.00   Median : 5.000  
##  Mean   :24.34   Mean   : 1.228     Mean   :17.19   Mean   : 7.365  
##  3rd Qu.:38.50   3rd Qu.: 0.000     3rd Qu.:23.00   3rd Qu.: 7.000  
##  Max.   :96.00   Max.   :63.000     Max.   :83.00   Max.   :34.000

##structure

str(data)
## 'data.frame':    167 obs. of  24 variables:
##  $ track_name          : chr  "Seven (feat. Latto) (Explicit Ver.)" "LALA" "vampire" "Cruel Summer" ...
##  $ artist.s._name      : chr  "Latto, Jung Kook" "Myke Towers" "Olivia Rodrigo" "Taylor Swift" ...
##  $ artist_count        : int  2 1 1 1 1 2 2 1 1 2 ...
##  $ released_year       : int  2023 2023 2023 2019 2023 2023 2023 2023 2023 2023 ...
##  $ released_month      : int  7 3 6 8 5 6 3 7 5 3 ...
##  $ released_day        : int  14 23 30 23 18 1 16 7 15 17 ...
##  $ in_spotify_playlists: int  553 1474 1397 7858 3133 2186 3090 714 1096 2953 ...
##  $ in_spotify_charts   : int  147 48 113 100 50 91 50 43 83 44 ...
##  $ streams             : num  1.41e+08 1.34e+08 1.40e+08 8.01e+08 3.03e+08 ...
##  $ in_apple_playlists  : int  43 48 94 116 84 67 34 25 60 49 ...
##  $ in_apple_charts     : int  263 126 207 207 133 213 222 89 210 110 ...
##  $ in_deezer_playlists : chr  "45" "58" "91" "125" ...
##  $ in_deezer_charts    : int  10 14 14 12 15 17 13 13 11 13 ...
##  $ in_shazam_charts    : chr  "826" "382" "949" "548" ...
##  $ bpm                 : int  125 92 138 170 144 141 148 100 130 170 ...
##  $ key                 : chr  "B" "C#" "F" "A" ...
##  $ mode                : chr  "Major" "Major" "Major" "Major" ...
##  $ danceability_.      : int  80 71 51 55 65 92 67 67 85 81 ...
##  $ valence_.           : int  89 61 32 58 23 66 83 26 22 56 ...
##  $ energy_.            : int  83 74 53 72 80 58 76 71 62 48 ...
##  $ acousticness_.      : int  31 7 17 11 14 19 48 37 12 21 ...
##  $ instrumentalness_.  : int  0 0 0 0 63 0 0 0 0 0 ...
##  $ liveness_.          : int  8 10 31 11 11 8 8 11 28 8 ...
##  $ speechiness_.       : int  4 4 6 15 6 24 3 4 9 33 ...
head(data)
##                            track_name    artist.s._name artist_count
## 1 Seven (feat. Latto) (Explicit Ver.)  Latto, Jung Kook            2
## 2                                LALA       Myke Towers            1
## 3                             vampire    Olivia Rodrigo            1
## 4                        Cruel Summer      Taylor Swift            1
## 5                      WHERE SHE GOES         Bad Bunny            1
## 6                            Sprinter Dave, Central Cee            2
##   released_year released_month released_day in_spotify_playlists
## 1          2023              7           14                  553
## 2          2023              3           23                 1474
## 3          2023              6           30                 1397
## 4          2019              8           23                 7858
## 5          2023              5           18                 3133
## 6          2023              6            1                 2186
##   in_spotify_charts   streams in_apple_playlists in_apple_charts
## 1               147 141381703                 43             263
## 2                48 133716286                 48             126
## 3               113 140003974                 94             207
## 4               100 800840817                116             207
## 5                50 303236322                 84             133
## 6                91 183706234                 67             213
##   in_deezer_playlists in_deezer_charts in_shazam_charts bpm key  mode
## 1                  45               10              826 125   B Major
## 2                  58               14              382  92  C# Major
## 3                  91               14              949 138   F Major
## 4                 125               12              548 170   A Major
## 5                  87               15              425 144   A Minor
## 6                  88               17              946 141  C# Major
##   danceability_. valence_. energy_. acousticness_. instrumentalness_.
## 1             80        89       83             31                  0
## 2             71        61       74              7                  0
## 3             51        32       53             17                  0
## 4             55        58       72             11                  0
## 5             65        23       80             14                 63
## 6             92        66       58             19                  0
##   liveness_. speechiness_.
## 1          8             4
## 2         10             4
## 3         31             6
## 4         11            15
## 5         11             6
## 6          8            24
tail(data)
##                                  track_name      artist.s._name artist_count
## 162                                Gasolina        Daddy Yankee            1
## 163                               One Dance Drake, WizKid, Kyla            3
## 164                               Enchanted        Taylor Swift            1
## 165                         Save Your Tears          The Weeknd            1
## 166                              Sure Thing              Miguel            1
## 167 Every Breath You Take - Remastered 2003          The Police            1
##     released_year released_month released_day in_spotify_playlists
## 162          2004              7           13                 6457
## 163          2016              4            4                43257
## 164          2010              1            1                 4564
## 165          2020              3           20                12688
## 166          2010              5           25                13801
## 167          1983              1            6                22439
##     in_spotify_charts    streams in_apple_playlists in_apple_charts
## 162                18  657723613                 98              95
## 163                24 2713922350                433             107
## 164                16  621660989                 24             101
## 165                13 1591223784                197             115
## 166                19  950906471                137             125
## 167                19 1593270737                211              74
##     in_deezer_playlists in_deezer_charts in_shazam_charts bpm key  mode
## 162                 453                0              454  96     Major
## 163               3,631                0               26 104  C# Major
## 164                 113                0               40 164  G# Major
## 165                 112                0              200 118     Major
## 166                 435                6              285  81   B Minor
## 167                 929                0              129 117  C# Major
##     danceability_. valence_. energy_. acousticness_. instrumentalness_.
## 162             86        74       80             33                  0
## 163             77        36       63              1                  0
## 164             45        24       62              8                  0
## 165             68        61       82              2                  0
## 166             68        51       60              3                  0
## 167             82        73       45             54                  0
##     liveness_. speechiness_.
## 162          8             6
## 163         36             5
## 164         16             3
## 165         50             3
## 166         19            10
## 167          7             3

Including Plots

library(ggplot2)
#Data Layer
ggplot(data=data) + labs(title ="most streamed songs plot")

# Aesthetic Layer
ggplot(data =data, aes(x = in_spotify_charts, y =in_spotify_playlists, col = bpm))+labs(title = "most streamed songs")

# Geometric layer
ggplot(data = data, aes(x=in_spotify_charts, y =in_spotify_playlists, col = bpm)) +
  geom_point() +
  labs(title = "in_spotify_playlists  vs in_spotify_charts", x = "in_spotify_charts", y = "in_spotify_playlists")

ggplot(data = data, aes(x=in_spotify_charts, y =in_spotify_playlists, size = bpm)) +
  geom_point() +
  labs(title = "in_spotify_playlists  vs in_spotify_charts", x = "in_spotify_charts", y = "in_spotify_playlists")

ggplot(data = data, aes(x = in_spotify_charts, y = in_spotify_playlists, col = factor(bpm), shape = factor(released_month))) +geom_point() +
labs(title = " in_spotify_playlists  vs in_spotify_charts", x = "in_spotify_charts", y = "in_spotify_playlists")
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 12. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 55 rows containing missing values (geom_point).

# Histogram plot
ggplot(data = data, aes(x = in_spotify_playlists)) +
geom_histogram(binwidth =5,color="black", fill="lightblue") +
labs(title = "Histogram of in_spotify_playlists", x = "in_spotify_playlists", y = "Count")

carb = table(data$released_month)
data.labels = names(carb)
share = round(carb/sum(carb)*100)
data.labels = paste(data.labels, share)
data.labels = paste(data.labels,"%",sep="") 
pie(carb,labels = data.labels,clockwise=TRUE, col=heat.colors(length(data.labels)), main="released month")

ggplot(data=data,aes(x=released_month)) +
  geom_histogram(binwidth=1,color="black",fill="lightblue") +
  labs(title="histogram of no.of songs released month in each month",x="released_month",y="count")