This is an R Markdown document about the “Pro kabaddi season 7raidpoints”.It is useful to buy a player for the next season. It can useful to know about the capacity of the player. :
data=read.csv("C:/Users/java/Downloads/Raids_Season7.csv")
##Summary It gives the brief about our data set.It gives about every column in our dataset
summary(data)
## Player Club Played Raids
## Length:45 Length:45 Min. :11.00 Min. : 23.00
## Class :character Class :character 1st Qu.:16.00 1st Qu.: 46.00
## Mode :character Mode :character Median :19.00 Median : 62.00
## Mean :18.71 Mean : 83.31
## 3rd Qu.:22.00 3rd Qu.:102.00
## Max. :24.00 Max. :262.00
## Raid.Pts Raid.Avg Super.Raids
## Min. : 32.0 Min. : 1.950 Min. : 0.000
## 1st Qu.: 60.0 1st Qu.: 3.750 1st Qu.: 1.000
## Median : 79.0 Median : 4.460 Median : 2.000
## Mean :105.6 Mean : 5.422 Mean : 2.533
## 3rd Qu.:125.0 3rd Qu.: 6.000 3rd Qu.: 3.000
## Max. :346.0 Max. :14.420 Max. :15.000
## It gives us the structure of the columns in our dataset.It gives data type of the every column and also gives no of variables and no of observations.
str(data)
## 'data.frame': 45 obs. of 7 variables:
## $ Player : chr "Pawan Kumar Sehrawat" "Pardeep Narwal" "Naveen Kumar" "Siddharth Sirish Desai" ...
## $ Club : chr "Bengal Warriors" "Patna Pirates" "Dabang Delhi" "Telugu Titans" ...
## $ Played : int 24 22 23 22 20 20 21 22 20 22 ...
## $ Raids : int 262 234 251 177 171 146 140 112 113 107 ...
## $ Raid.Pts : int 346 302 301 217 205 190 162 148 146 132 ...
## $ Raid.Avg : num 14.42 13.73 13.09 9.86 10.25 ...
## $ Super.Raids: int 13 15 2 7 6 6 3 2 2 1 ...
head(data)
## Player Club Played Raids Raid.Pts Raid.Avg
## 1 Pawan Kumar Sehrawat Bengal Warriors 24 262 346 14.42
## 2 Pardeep Narwal Patna Pirates 22 234 302 13.73
## 3 Naveen Kumar Dabang Delhi 23 251 301 13.09
## 4 Siddharth Sirish Desai Telugu Titans 22 177 217 9.86
## 5 Maninder Singh Bengal Warriors 20 171 205 10.25
## 6 Vikash Kandola Haryana Steelers 20 146 190 9.50
## Super.Raids
## 1 13
## 2 15
## 3 2
## 4 7
## 5 6
## 6 6
tail(data)
## Player Club Played Raids Raid.Pts
## 40 Farhad Rahimi Milaghardan Telugu Titans 22 38 46
## 41 Rajnish Telugu Titans 11 32 45
## 42 Suraj Desai Telugu Titans 12 35 44
## 43 Meraj Sheykh Dabang Delhi 17 31 41
## 44 Mohammad Esmaeil Maghsoud Patna Pirates 20 31 39
## 45 Nitin Rawal Jaipur Pink Panthers 16 23 32
## Raid.Avg Super.Raids
## 40 2.09 0
## 41 4.09 1
## 42 3.67 1
## 43 2.41 1
## 44 1.95 0
## 45 2.00 1
You can also embed plots, for example:
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.1
#Data Layer
ggplot(data = data) + labs(title ="Raiders of pkl")
ggplot(data = data, aes(x = Raids, y = Raid.Pts, col = Raid.Avg))+labs(title = "Raiders of pkl")
ggplot(data = data, aes(x = Raids, y = Raid.Pts, col = Raid.Avg , )) +
geom_point() +
labs(title = "Raids vs Raid points", x = "Raids", y = "Raid points")
ggplot(data = data, aes(x = Raids, y = Raid.Pts, size = Raid.Avg)) +
geom_point() +
labs(title = "Raids vs Raid points", x = "Raids", y = "Raid points")
ggplot(data = data, aes(x = Raids, y = Raid.Pts, col = factor(Raid.Avg), shape = factor(Super.Raids))) +geom_point() +
labs(title = "Raids vs Raid points", x = "Raids", y = "Raid points")
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 9. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 3 rows containing missing values (geom_point).
ggplot(data = data, aes(x = Raid.Pts)) +
geom_histogram(binwidth = 10,color="black", fill="lightblue") +
labs(title = "Histogram of Raid points", x = "Raid points", y = "No of raiders")
ggplot(data = data, aes(x=Raids, fill=Raid.Pts)) +
geom_bar(stat="count")
carb = table(data$Super.Raids)
data.labels = names(carb)
share = round(carb/sum(carb)*1000)
data.labels = paste(data.labels, share)
data.labels = paste(data.labels)
pie(carb,labels = data.labels,clockwise=TRUE, col=heat.colors(length(data.labels)), main="Frequency of Super Raids")
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.