BASE DE DATOS DE PINUS GREGGII DE AMBAS LOCALIDADES DE INVESTIGACI?N.

ANOVAS POR VARIABLES

ANOVA EN ALTURA #ANALISIS EN MZ

OMZ1<-read.csv("C:/LUGO/GREMZ.csv", header=T)
SNAMZ<- OMZ1[which(!is.na(OMZ1$H14)),] #Eliminar NA
tapply(SNAMZ$H14,list(SNAMZ$procedencia,SNAMZ$bloque),mean)#PROMEDIO POR BLOQUES
##              1         2         3        4         5         6         7
## CDZH  9.333333        NA 10.000000 9.000000 11.166667 10.333333  4.666667
## EMQ  10.666667        NA  8.333333 4.833333 12.000000  3.666667 10.166667
## EPH   7.500000  5.833333  8.750000 8.250000 10.333333  3.100000  9.333333
## GNL   7.000000        NA  6.500000 2.700000  1.733333  6.666667  4.200000
## JC   11.000000  7.750000  2.600000 8.000000  4.500000  3.466667  3.800000
## LAH         NA  6.100000  4.000000 8.500000  6.000000  5.000000  6.166667
## LLC   8.500000        NA  6.750000 5.166667  2.266667  4.500000  3.400000
## MH   11.500000 11.333333  7.333333 9.000000  3.300000  8.000000        NA
## PLCC  6.250000  8.500000  5.500000 3.700000  5.500000  4.066667  5.500000
## PSJC  5.333333  4.800000  5.166667 9.500000  3.966667 10.500000  3.500000
## SAC   9.666667  6.666667        NA       NA  8.250000 10.000000  7.333333
## TLQ  10.000000  6.833333  7.000000 3.166667  2.800000 11.166667  9.333333
## XH    8.666667  5.500000  7.000000       NA  9.750000  5.333333  7.000000
##              8         9        10       11        12
## CDZH  4.600000  9.833333  7.500000 4.033333 11.250000
## EMQ  11.166667  9.833333 11.166667 5.833333 11.500000
## EPH   4.500000 11.000000 11.000000 6.833333 11.333333
## GNL   7.833333  7.250000  4.133333 3.166667  9.666667
## JC    8.166667  8.666667  8.166667 7.333333  8.833333
## LAH   9.500000  3.800000  8.666667 8.166667  7.333333
## LLC   5.750000  3.200000 10.000000 2.883333  7.000000
## MH    9.333333  9.000000  9.000000 4.633333  6.000000
## PLCC  4.500000  8.666667  6.833333 5.500000  6.333333
## PSJC  8.000000  7.833333 11.000000 7.250000  9.500000
## SAC   7.500000  8.000000  9.500000 3.666667  8.500000
## TLQ   6.500000  7.750000  9.500000 3.300000 10.166667
## XH    2.566667  9.333333  8.250000 6.833333  7.750000
#promedios de las procedencias
prom.proc.MZG <- with(OMZ1, data.frame(
                       procedencia = sort (unique(procedencia)),
                       h.prom = tapply(H14, procedencia, mean, na.rm = T),
                       db.prom= tapply(DB14, procedencia, mean, na.rm = T),
                       dap.prom = tapply(DAP14, procedencia, mean, na.rm = T),
                       dc.prom = tapply(DC14, procedencia, mean, na.rm = T),
                       ac.prom = tapply(AC14, procedencia, mean, na.rm = T)
                       )
                  )

#Para crear graficos de interaccion, siguiente funcion y esta libreria
library(graphics)
with(SNAMZ, {
            interaction.plot(procedencia, bloque, H14, ylim=c(0,17))
            ## order the rows by their mean effect
            rowpos <- factor(procedencia,
                   levels = sort.list(tapply(H14, procedencia, mean)))
            interaction.plot(bloque, procedencia,H14,col=1:8,                                     cex.axis=1.5,cex.lab=1.5,cex.main=1.5,lwd=2,lty=1,main="a) Interaction in Magdalena Zahuatlán")
            }
     )

library(agricolae)
## Warning: package 'agricolae' was built under R version 3.1.3

SNAMZ$bloque= factor(SNAMZ$bloque)
modelo<-aov(H14~bloque*procedencia,data=SNAMZ)#Modelo Bloque Completos al Azar
summary(modelo)
##                     Df Sum Sq Mean Sq F value Pr(>F)    
## bloque              11  582.1   52.92  23.627 <2e-16 ***
## procedencia         12  403.8   33.65  15.025 <2e-16 ***
## bloque:procedencia 123 1548.6   12.59   5.622 <2e-16 ***
## Residuals          228  510.6    2.24                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia",alpha=0.05)# Modelo de Tukey para las procedencias
head(tukey)
## $statistics
##       Mean       CV  MSerror      HSD r.harmonic
##   7.181733 20.83819 2.239642 1.321595   28.75248
## 
## $parameters
##    Df ntr StudentizedRange
##   228  13         4.735293
## 
## $means
##           H14      std  r Min  Max
## CDZH 8.100000 2.844544 29 3.1 12.0
## EMQ  8.822581 3.078280 31 3.0 13.5
## EPH  8.353125 3.111683 32 1.2 13.0
## GNL  5.486667 2.704879 30 1.0 10.5
## JC   6.487097 2.674664 31 2.1 11.0
## LAH  6.829630 2.057970 27 3.1 10.0
## LLC  5.505769 2.776917 26 1.8 12.5
## MH   8.082143 2.917388 28 2.4 12.5
## PLCC 5.957143 2.036778 28 2.1  9.0
## PSJC 7.078571 2.692425 28 2.9 12.0
## SAC  7.821429 2.318262 28 3.5 13.0
## TLQ  7.524138 3.105025 29 1.1 12.0
## XH   6.989286 2.289968 28 1.8 11.0
## 
## $comparison
## NULL
## 
## $groups
##     trt    means    M
## 1  EMQ  8.822581    a
## 2  EPH  8.353125   ab
## 3  CDZH 8.100000  abc
## 4  MH   8.082143  abc
## 5  SAC  7.821429  abc
## 6  TLQ  7.524138  bcd
## 7  PSJC 7.078571 bcde
## 8  XH   6.989286  cde
## 9  LAH  6.829630 cdef
## 10 JC   6.487097 defg
## 11 PLCC 5.957143  efg
## 12 LLC  5.505769   fg
## 13 GNL  5.486667    g
par(mfrow=c(2,2),cex=0.6)
bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,12),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,10),bar=FALSE,col="green",space=1,main="Error",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,15),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,10),density=20,col="black",main="Grupos",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

#ANALISIS DE TP
OTP1<-read.csv("C:/LUGO/GRETP.csv", header=T)
SNATP<- OTP1[which(!is.na(OTP1$H14)),] #Eliminar NA
tapply(SNATP$H14,list(SNATP$procedencia,SNATP$bloque),mean)#PROMEDIO POR BLOQUES
##              1         2         3         4         5         6         7
## CDZH 10.900000 11.050000 11.666667 11.666667 12.833333 12.500000 13.000000
## EMQ  11.350000 12.633333 11.500000 12.500000 14.166667 13.500000 13.166667
## EPH  11.666667 12.000000 12.333333 11.833333 13.500000 13.166667 13.666667
## GNL   9.333333  8.000000  8.833333 10.333333  9.000000  8.333333  8.750000
## JC    7.733333  8.500000  9.000000  9.500000  9.333333 10.166667  9.833333
## LAH  11.833333 10.833333 10.333333 11.000000 10.833333 12.166667  9.500000
## LLC   8.166667  9.000000  6.500000  9.666667  9.833333  8.666667  8.500000
## MH   11.733333  9.716667 11.000000 11.833333  9.750000 11.000000 11.000000
## PLCC 10.233333  8.166667  8.166667  8.333333  9.166667  8.750000  8.333333
## PSJC  6.566667  9.966667  7.500000 12.833333 10.500000 11.666667 11.833333
## SAC   9.666667 10.166667  9.000000  9.500000  9.166667  8.500000  9.666667
## TLQ  11.433333 11.666667 12.166667 12.833333 12.166667 10.166667 12.500000
## XH   10.500000 12.833333 10.000000  9.666667 11.500000 10.666667 11.000000
##              8         9        10        11        12
## CDZH 11.500000 12.000000 10.833333 12.333333 12.000000
## EMQ  13.833333 12.833333 13.666667 13.000000 13.000000
## EPH  14.500000 13.000000 11.333333  9.333333 12.000000
## GNL   8.750000  7.750000  9.833333  9.500000  6.666667
## JC    8.666667  8.500000  8.750000  9.166667  7.833333
## LAH  11.500000 10.833333 12.666667 11.166667 11.166667
## LLC   9.000000  8.333333  8.000000  8.333333  9.500000
## MH   11.500000 11.333333 12.000000 10.166667 13.000000
## PLCC 10.000000  9.333333  7.666667  8.666667  7.833333
## PSJC 11.000000 10.000000 12.000000 10.500000  8.666667
## SAC  10.500000  9.000000  9.500000  8.000000  7.000000
## TLQ  10.000000 12.333333  9.666667 12.166667 12.166667
## XH   12.000000  9.000000 12.333333 10.666667 11.666667
 #Promedio por procedencia
prom.proc.TPG <- with(OTP1, data.frame(
                       procedencia = sort (unique(procedencia)),
                       h.prom = tapply(H14, procedencia, mean, na.rm = T),
                       db.prom= tapply(DB14, procedencia, mean, na.rm = T),
                       dap.prom = tapply(DAP14, procedencia, mean, na.rm = T),
                       dc.prom = tapply(DC14, procedencia, mean, na.rm = T),
                       ac.prom = tapply(AC14, procedencia, mean, na.rm = T)
                       )
                  )

library(graphics)
with(SNATP, {
  interaction.plot(procedencia, bloque, H14, ylim=c(0,17))
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(H14, procedencia, mean)))
  interaction.plot(bloque, procedencia,H14,col=1:8, cex.axis=1.5,cex.lab=1.5,cex.main=1.5,lwd=2,lty=1,main="a) Interaction in Tlacotepec Plumas")
})


library(agricolae)
SNATP$bloque= factor(SNATP$bloque)
modelo <- aov(H14~bloque*procedencia, data=SNATP)#Modelo Bloque Completos al Azar
summary(modelo)
##                     Df Sum Sq Mean Sq F value Pr(>F)    
## bloque              11   66.3    6.03   2.258 0.0119 *  
## procedencia         12  927.6   77.30  28.972 <2e-16 ***
## bloque:procedencia 132  397.6    3.01   1.129 0.2004    
## Residuals          289  771.1    2.67                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia", alpha=0.05)# Modelo de Tukey para las procedencias
head(tukey)
## $statistics
##       Mean       CV MSerror      HSD r.harmonic
##   10.50809 15.54446 2.66808 1.319569    34.2035
## 
## $parameters
##    Df ntr StudentizedRange
##   289  13         4.724631
## 
## $means
##            H14       std  r Min  Max
## CDZH 11.852857 1.3061474 35 8.5 14.5
## EMQ  12.973529 1.1122755 34 9.5 14.5
## EPH  12.235294 2.2061735 34 5.0 16.0
## GNL   8.787879 1.6537377 33 6.0 13.5
## JC    8.932353 0.9959678 34 7.0 11.5
## LAH  11.200000 1.5586570 35 8.0 14.5
## LLC   8.647059 1.5400188 34 3.0 13.0
## MH   11.201471 1.4494767 34 8.0 14.0
## PLCC  8.682353 1.0373248 34 7.0 10.5
## PSJC 10.252778 2.7941251 36 4.5 15.5
## SAC   9.075758 1.4258836 33 5.0 13.5
## TLQ  11.605556 1.8306821 36 6.5 14.0
## XH   10.969697 1.9642882 33 5.0 14.5
## 
## $comparison
## NULL
## 
## $groups
##     trt     means  M
## 1  EMQ  12.973529  a
## 2  EPH  12.235294 ab
## 3  CDZH 11.852857 ab
## 4  TLQ  11.605556  b
## 5  MH   11.201471 bc
## 6  LAH  11.200000 bc
## 7  XH   10.969697 bc
## 8  PSJC 10.252778 cd
## 9  SAC   9.075758 de
## 10 JC    8.932353  e
## 11 GNL   8.787879  e
## 12 PLCC  8.682353  e
## 13 LLC   8.647059  e
par(mfrow=c(2,2),cex=0.6)

bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,15),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,15),bar=FALSE,col="green",space=1,main="Error",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,20),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,15),density=20,col="black",main="Grupos",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

#ANALSIS DE LOS DOS GRUPOS EN CONJUNTO
PO<-read.csv("C:/LUGO/gregtod.csv", header=T)
#promedios de las procedencias
prom.procG <- with(PO, data.frame(
                       procedencia = sort (unique(procedencia)),
                       h.prom = tapply(H14, procedencia, mean, na.rm = T),
                       db.prom= tapply(DB14, procedencia, mean, na.rm = T),
                       dap.prom = tapply(DAP14, procedencia, mean, na.rm = T),
                       dc.prom = tapply(DC14, procedencia, mean, na.rm = T),
                       ac.prom = tapply(AC14, procedencia, mean, na.rm = T)
                       )
                  )
#promedios de las localidades 
prom.locG <- with(PO, data.frame(
                       Localidad = sort (unique(Localidad)),
                       h.prom = tapply(H14, Localidad, mean, na.rm = T),
                       db.prom= tapply(DB14, Localidad, mean, na.rm = T),
                       dap.prom = tapply(DAP14, Localidad, mean, na.rm = T),
                       dc.prom = tapply(DC14, Localidad, mean, na.rm = T),
                       ac.prom = tapply(AC14, Localidad, mean, na.rm = T)
                       )
                  )

POH<- PO[which(!is.na(PO$H14)),] #Eliminar NA
tapply(POH$H14,list(POH$procedencia,POH$bloque),mean)#PROMEDIO POR BLOQUES
##              1         2         3         4         5         6         7
## CDZH 10.116667 11.050000 11.250000 10.600000 12.000000 11.416667  8.833333
## EMQ  10.940000 12.633333  9.916667  8.666667 13.625000  8.583333 11.666667
## EPH   9.583333  8.916667 10.900000 10.400000 11.916667  8.133333 11.500000
## GNL   8.166667  8.000000  7.900000  6.516667  5.366667  7.500000  6.475000
## JC    8.550000  8.200000  5.800000  9.125000  6.916667  6.816667  6.816667
## LAH  11.833333  8.466667  7.166667  9.750000  9.625000 10.375000  7.500000
## LLC   8.333333  9.000000  6.600000  7.416667  6.050000  7.625000  5.950000
## MH   11.616667 10.525000  9.166667 10.416667  5.880000  9.500000 11.000000
## PLCC  8.640000  8.300000  7.500000  6.016667  7.333333  5.940000  7.625000
## PSJC  5.950000  8.675000  6.333333 12.000000  7.233333 11.200000  8.500000
## SAC   9.666667  8.416667  9.000000  9.500000  8.800000  9.250000  8.500000
## TLQ  10.860000  9.250000 10.875000  8.000000  8.420000 10.666667 10.916667
## XH    9.400000  9.900000  8.500000  9.666667 10.800000  8.000000  9.000000
##              8         9        10       11        12
## CDZH  8.050000 10.916667  9.166667 8.183333 11.625000
## EMQ  12.500000 11.333333 12.416667 9.416667 12.100000
## EPH   9.500000 12.000000 11.166667 8.083333 11.666667
## GNL   8.200000  7.500000  6.983333 6.333333  8.166667
## JC    8.416667  8.600000  8.400000 8.250000  8.333333
## LAH  10.700000  8.020000 10.666667 9.666667  9.250000
## LLC   7.700000  6.280000  9.200000 5.608333  8.500000
## MH   10.200000 10.400000 11.250000 7.400000 11.250000
## PLCC  8.166667  9.000000  7.250000 7.083333  7.083333
## PSJC  9.500000  8.916667 11.600000 9.200000  9.083333
## SAC   8.250000  8.500000  9.500000 5.833333  7.750000
## TLQ   8.600000 10.500000  9.583333 8.620000 11.166667
## XH    6.340000  9.166667 10.700000 8.750000 10.100000
library(graphics)
with(POH, {
  interaction.plot(procedencia, Localidad, H14, col=1:2,cex.axis=.8,cex.lab=1.5,cex.main=1.5,lty = 1,lwd=2,main="a) Interaction of the localities evaluated")
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(H14, procedencia, mean)))
  interaction.plot(Localidad, procedencia,H14, col = 1:8,cex.axis=1,cex.lab=1.5,cex.main=1.5,lwd=2,lty = 1,main="b) Interaction of the provenances in the two localities")
})

library(agricolae)
POH$bloque= factor(POH$bloque)
modelo <- aov(H14~Localidad+procedencia+bloque+Localidad:procedencia+Localidad:bloque+procedencia:bloque+Localidad:procedencia:bloque, data=POH)#Modelo Bloque Completos al Azar
summary(modelo)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Localidad                      1 2251.7  2251.7 908.269  < 2e-16 ***
## procedencia                   12 1212.4   101.0  40.755  < 2e-16 ***
## bloque                        11  260.2    23.7   9.540 9.37e-16 ***
## Localidad:procedencia         12  130.6    10.9   4.390 1.08e-06 ***
## Localidad:bloque              11  376.6    34.2  13.809  < 2e-16 ***
## procedencia:bloque           132  944.9     7.2   2.887  < 2e-16 ***
## Localidad:procedencia:bloque 123 1001.4     8.1   3.284  < 2e-16 ***
## Residuals                    517 1281.7     2.5                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia",alpha=0.05)# Modelo de Tukey para las procedencias
head(tukey)
## $statistics
##      Mean       CV  MSerror       HSD r.harmonic
##   8.98689 17.52027 2.479136 0.9335725   63.02449
## 
## $parameters
##    Df ntr StudentizedRange
##   517  13          4.70709
## 
## $means
##            H14      std  r Min  Max
## CDZH 10.152344 2.839425 64 3.1 14.5
## EMQ  10.993846 3.073316 65 3.0 14.5
## EPH  10.353030 3.303202 66 1.2 16.0
## GNL   7.215873 2.756061 63 1.0 13.5
## JC    7.766154 2.319434 65 2.1 11.5
## LAH   9.296774 2.816344 62 3.1 14.5
## LLC   7.285833 2.656717 60 1.8 13.0
## MH    9.792742 2.711660 62 2.4 14.0
## PLCC  7.451613 2.070697 62 2.1 10.5
## PSJC  8.864062 3.156418 64 2.9 15.5
## SAC   8.500000 1.974842 61 3.5 13.5
## TLQ   9.784615 3.198644 65 1.1 14.0
## XH    9.142623 2.901290 61 1.8 14.5
## 
## $comparison
## NULL
## 
## $groups
##     trt     means   M
## 1  EMQ  10.993846   a
## 2  EPH  10.353030  ab
## 3  CDZH 10.152344 abc
## 4  MH    9.792742 bcd
## 5  TLQ   9.784615 bcd
## 6  LAH   9.296774 cde
## 7  XH    9.142623  de
## 8  PSJC  8.864062  de
## 9  SAC   8.500000  ef
## 10 JC    7.766154  fg
## 11 PLCC  7.451613   g
## 12 LLC   7.285833   g
## 13 GNL   7.215873   g
par(mfrow=c(2,2),cex=0.6)

bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,15),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,12),bar=FALSE,col="green",space=1,main="Error",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,20),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,15),density=20,col="black",main="Grupos",ylab="Altura (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

boxplot(POH$H14 ~ POH$Localidad, xlab = "Localidad", ylab = "Altura (m)")

ANOVA DEL DIAMETRO BASAL

OMZ1<-read.csv("C:/LUGO/GREMZ.csv",header=T)
SNAMZ<- OMZ1[which(!is.na(OMZ1$DB14)),] #Eliminar NA
tapply(SNAMZ$DB14,list(SNAMZ$procedencia,SNAMZ$bloque),mean)#PROMEDIO POR BLOQUES
##             1         2         3         4         5         6         7
## CDZH 20.26333        NA 25.150000 17.345000 19.206667 20.690000  9.656667
## EMQ  20.16000        NA 16.553333  6.896667 18.460000 10.610000 19.526667
## EPH  24.83000  8.593333 21.325000 24.350000 24.720000  4.033333 14.956667
## GNL  15.49333        NA 11.145000  5.833333  4.986667 17.720000 10.345000
## JC   23.55000 19.895000  5.093333 16.230000 10.293333  9.336667  9.123333
## LAH        NA  6.900000  9.763333 18.460000  9.550000  9.870000 15.386667
## LLC  15.49000        NA 14.640000  8.803333  7.320000 14.640000  7.640000
## MH   24.82667 24.300000 15.490000 19.310000  7.533333 17.080000        NA
## PLCC 11.14000 15.280000 14.010000  6.790000 13.790000 10.396667  8.280000
## PSJC 10.61000  9.550000  8.170000 20.690000  8.803333 20.690000  9.230000
## SAC  14.30667 11.246667        NA        NA 13.370000 18.940000  9.973333
## TLQ  17.34500 11.350000 12.730000  7.640000  7.800000 17.403333 15.703333
## XH   19.41667 11.780000 15.170000        NA 14.165000 15.386667  9.230000
##              8        9       10        11       12
## CDZH  8.910000 22.49333 14.64333  7.953333 19.41500
## EMQ  22.920000 16.66000 16.55333 10.076667 16.44333
## EPH  10.820000 23.87000 19.94667 14.216667 20.48000
## GNL  15.810000 13.68500  7.96000  9.443333 17.72000
## JC   15.596667 15.59667 16.23667 21.113333 17.93333
## LAH  16.075000  8.59000 17.82667 14.750000 10.50333
## LLC  12.095000  6.36500 17.19000  6.580000 14.00500
## MH   18.040000 17.66500 18.46000  5.516667  9.55000
## PLCC 13.370000 15.81000 15.49000 13.686667 10.08333
## PSJC 11.990000 12.62667 22.60000 12.415000 19.52667
## SAC  11.780000 14.85333 14.96000  6.366667 13.90333
## TLQ  13.210000  9.39000 22.28000  4.935000 17.61000
## XH    6.843333 17.29667 12.73500 12.410000 13.05000
library(graphics)
with(SNAMZ, {
  interaction.plot(procedencia, bloque, DB14, ylim=c(0,17))
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(DB14, procedencia, mean)))
  interaction.plot(bloque, procedencia,DB14,col=1:8, cex.axis=1.5,cex.lab=1.5,cex.main=1.5,lwd=2,lty=1,main="a) Interaction in Magdalena Zahuatlán")
})

library(agricolae)
SNAMZ$bloque= factor(SNAMZ$bloque)
modelo <- aov(DB14~bloque*procedencia,data=SNAMZ)#Modelo Bloque Completos al Azar
summary(modelo)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## bloque              11   1592  144.70   9.079 2.06e-13 ***
## procedencia         12   1401  116.76   7.326 2.45e-11 ***
## bloque:procedencia 123   7014   57.02   3.578  < 2e-16 ***
## Residuals          228   3634   15.94                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia",alpha=0.05)# Modelo de Tukey para las procedencias
head(tukey)
## $statistics
##       Mean       CV  MSerror      HSD r.harmonic
##   14.07032 28.37284 15.93726 3.525462   28.75248
## 
## $parameters
##    Df ntr StudentizedRange
##   228  13         4.735293
## 
## $means
##          DB14      std  r  Min   Max
## CDZH 16.21103 6.432142 29 4.77 28.33
## EMQ  15.73097 5.857147 31 5.09 25.15
## EPH  17.78469 8.532520 32 2.55 31.51
## GNL  11.84167 5.200204 30 3.18 22.60
## JC   14.21097 5.591341 31 4.14 23.55
## LAH  12.94519 4.899773 27 4.14 21.96
## LLC  11.16462 4.807489 26 3.82 22.60
## MH   16.41536 7.422172 28 3.50 30.56
## PLCC 12.38000 4.173351 28 5.09 20.05
## PSJC 13.40321 6.049055 28 7.00 31.51
## SAC  12.74250 4.614856 28 3.50 21.65
## TLQ  13.58793 5.685673 29 4.14 24.51
## XH   13.62464 4.191416 28 4.77 21.65
## 
## $comparison
## NULL
## 
## $groups
##     trt    means    M
## 1  EPH  17.78469    a
## 2  MH   16.41536   ab
## 3  CDZH 16.21103  abc
## 4  EMQ  15.73097 abcd
## 5  JC   14.21097 bcde
## 6  XH   13.62464 bcde
## 7  TLQ  13.58793 bcde
## 8  PSJC 13.40321 bcde
## 9  LAH  12.94519 bcde
## 10 SAC  12.74250  cde
## 11 PLCC 12.38000   de
## 12 GNL  11.84167    e
## 13 LLC  11.16462    e
par(mfrow=c(1,2),cex=0.6)
bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,30),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,20),bar=FALSE,col="green",space=1,main="Error",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

bar.err(tukey$means,variation="range",ylim=c(0,35),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,20),density=20,col="black",main="Grupos",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

#ANALISIS DE TP
OTP1<-read.csv("C:/LUGO/GRETP.csv", header=T)
SNATP<- OTP1[which(!is.na(OTP1$DB14)),] #Eliminar NA
tapply(SNATP$H14,list(SNATP$procedencia,SNATP$bloque),mean)#PROMEDIO POR BLOQUES
##              1         2         3         4         5         6         7
## CDZH 10.900000 11.050000 11.666667 11.666667 12.833333 12.500000 13.000000
## EMQ  11.350000 12.633333 11.500000 12.500000 14.166667 13.500000 13.166667
## EPH  11.666667 12.000000 12.333333 11.833333 13.500000 13.166667 13.666667
## GNL   9.333333  8.000000  8.833333 10.333333  9.000000  8.333333  8.750000
## JC    7.733333  8.500000  9.000000  9.500000  9.333333 10.166667  9.833333
## LAH  11.833333 10.833333 10.333333 11.000000 10.833333 12.166667  9.500000
## LLC   8.166667  9.000000  6.500000  9.666667  9.833333  8.666667  8.500000
## MH   11.733333  9.716667 11.000000 11.833333  9.750000 11.000000 11.000000
## PLCC 10.233333  8.166667  8.166667  8.333333  9.166667  8.750000  8.333333
## PSJC  6.566667  9.966667  7.500000 12.833333 10.500000 11.666667 11.833333
## SAC   9.666667 10.166667  9.000000  9.500000  9.166667  8.500000  9.666667
## TLQ  11.433333 11.666667 12.166667 12.833333 12.166667 10.166667 12.500000
## XH   10.500000 12.833333 10.000000  9.666667 11.500000 10.666667 11.000000
##              8         9        10        11        12
## CDZH 11.500000 12.000000 10.833333 12.333333 12.000000
## EMQ  13.833333 12.833333 13.666667 13.000000 13.000000
## EPH  14.500000 13.000000 11.333333  9.333333 12.000000
## GNL   8.750000  7.750000  9.833333  9.500000  6.666667
## JC    8.666667  8.500000  8.750000  9.166667  7.833333
## LAH  11.500000 10.833333 12.666667 11.166667 11.166667
## LLC   9.000000  8.333333  8.000000  8.333333  9.500000
## MH   11.500000 11.333333 12.000000 10.166667 13.000000
## PLCC 10.000000  9.333333  7.666667  8.666667  7.833333
## PSJC 11.000000 10.000000 12.000000 10.500000  8.666667
## SAC  10.500000  9.000000  9.500000  8.000000  7.000000
## TLQ  10.000000 12.333333  9.666667 12.166667 12.166667
## XH   12.000000  9.000000 12.333333 10.666667 11.666667
library(graphics)
with(SNATP, {
  interaction.plot(procedencia, bloque, DB14, ylim=c(0,17))
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(DB14, procedencia, mean)))
  interaction.plot(bloque, procedencia,DB14,col=1:8, cex.axis=1.5,cex.lab=1.5,cex.main=1.5,lwd=2,lty=1,main="a) Interaction in Tlacotepec Plumas")
})

library(agricolae)
SNATP$bloque= factor(SNATP$bloque)
modelo <- aov(DB14~bloque*procedencia, data=SNATP)#Modelo Bloque Completos al Azar
summary(modelo)
##                     Df Sum Sq Mean Sq F value Pr(>F)    
## bloque              11    254    23.1   1.034  0.416    
## procedencia         12   4295   357.9  16.040 <2e-16 ***
## bloque:procedencia 132   2359    17.9   0.801  0.927    
## Residuals          289   6448    22.3                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia", alpha=0.05)# Modelo de Tukey para las procedencias
head(tukey)
## $statistics
##       Mean       CV MSerror      HSD r.harmonic
##   18.28739 25.83017  22.313 3.816029    34.2035
## 
## $parameters
##    Df ntr StudentizedRange
##   289  13         4.724631
## 
## $means
##          DB14      std  r   Min   Max
## CDZH 21.91229 4.664748 35 12.41 31.83
## EMQ  22.04794 3.727286 34 15.28 31.19
## EPH  22.74088 4.858371 34 11.78 32.15
## GNL  15.77152 4.220940 33  8.91 27.06
## JC   14.60412 3.071909 34  8.91 20.05
## LAH  19.38914 4.541327 35 11.14 25.78
## LLC  13.90294 3.402411 34  6.37 22.28
## MH   20.55029 4.618767 34 12.10 32.79
## PLCC 14.24029 2.948870 34  9.55 23.55
## PSJC 18.40278 7.816393 36  8.28 32.15
## SAC  14.50788 2.336828 33 10.19 19.74
## TLQ  19.83222 5.542006 36  8.28 29.92
## XH   19.44606 4.746533 33  8.28 28.65
## 
## $comparison
## NULL
## 
## $groups
##     trt    means   M
## 1  EPH  22.74088   a
## 2  EMQ  22.04794  ab
## 3  CDZH 21.91229  ab
## 4  MH   20.55029  ab
## 5  TLQ  19.83222  ab
## 6  XH   19.44606 abc
## 7  LAH  19.38914 abc
## 8  PSJC 18.40278  bc
## 9  GNL  15.77152  cd
## 10 JC   14.60412   d
## 11 SAC  14.50788   d
## 12 PLCC 14.24029   d
## 13 LLC  13.90294   d
par(mfrow=c(2,2),cex=0.6)
bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,30),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,25),bar=FALSE,col="green",space=0.5,main="Error",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,35),bar=FALSE,col="blue", space=0.5,main="Rangos de valores = Max - Min",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,30),density=20,col="black",main="Grupos",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

PO<-read.csv("C:/LUGO/gregtod.csv", header=T)
POH<- PO[which(!is.na(PO$DB14)),] #Eliminar NA
tapply(POH$DB14,list(POH$procedencia,POH$bloque),mean)#PROMEDIO POR BLOQUES
##             1        2         3        4        5        6        7
## CDZH 18.24833 22.43000 26.260000 18.58800 20.69167 22.76000 18.25000
## EMQ  21.77400 22.60000 19.788333 12.99667 20.53000 16.55333 20.90333
## EPH  24.24500 17.50667 23.810000 19.22600 23.18333 12.62667 19.30833
## GNL  16.76500 16.02333 14.326000 10.39667 10.08000 15.22667 12.49250
## JC   16.62750 15.34200  9.708333 14.96000 12.36167 13.21000 13.15500
## LAH  23.23333 12.94667 14.536667 17.55833 14.96000 17.90500 16.10600
## LLC  17.40000 10.29333 13.050000 10.87333 11.46000 13.52750 11.30250
## MH   23.60667 23.34333 18.513333 18.94000 11.96800 17.77167 19.42000
## PLCC 12.98800 15.59800 14.247500 10.34500 14.32167 11.71400 12.41500
## PSJC 12.62500 15.99500  9.815000 24.43000 12.99833 21.32600 13.38600
## SAC  15.48333 11.88333 14.750000 14.53333 13.75200 16.55250 12.41500
## TLQ  19.35200 15.96667 19.100000 13.31667 13.68800 19.15333 18.30167
## XH   21.13600 17.82600 16.708333 19.41667 14.96000 16.07500 14.40500
##             8        9       10        11       12
## CDZH 14.69333 22.44000 17.40167 13.366667 21.16750
## EMQ  23.18500 17.29667 20.00167 14.746667 21.13400
## EPH  20.85000 23.55333 23.71500 17.135000 19.63000
## GNL  15.53400 13.68500 13.90167 13.530000 15.70500
## JC   14.64167 15.78800 16.74400 16.763333 15.38667
## LAH  17.50800 14.45200 19.36500 16.765000 16.60333
## LLC  13.49600 10.12200 17.06200  9.496667 13.75000
## MH   19.99200 19.48000 19.10000 12.148333 20.13500
## PLCC 15.70333 15.43833 13.84667 13.315000 11.99167
## PSJC 16.87167 14.37667 23.81000 15.406000 17.72167
## SAC  12.73500 15.22333 15.54500  9.816667 13.26500
## TLQ  14.96000 16.55200 19.78667 13.814000 20.10500
## XH   12.06400 18.99500 15.91800 16.178333 18.01600
library(graphics)
with(POH, {
  interaction.plot(procedencia, Localidad, DB14, col=1:2,cex.axis=.8,cex.lab=1.5,cex.main=1.5,lty = 1,lwd=2,main="a) Interaction of the localities evaluated")
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(DB14, procedencia, mean)))
  interaction.plot(Localidad, procedencia,DB14, col = 1:8,cex.axis=1,cex.lab=1.5,cex.main=1.5,lwd=2,lty = 1,main="b) Interaction of the provenances in the two localities")
})



library(agricolae)
POH$bloque= factor(POH$bloque)
modelo <- aov(DB14~Localidad+procedencia+bloque+Localidad:procedencia+Localidad:bloque+procedencia:bloque+Localidad:procedencia:bloque,data=POH)
summary(modelo)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Localidad                      1   3619    3619 185.583  < 2e-16 ***
## procedencia                   12   4933     411  21.082  < 2e-16 ***
## bloque                        11   1337     122   6.233 1.11e-09 ***
## Localidad:procedencia         12    755      63   3.224 0.000174 ***
## Localidad:bloque              11    516      47   2.407 0.006402 ** 
## procedencia:bloque           132   4864      37   1.889 4.47e-07 ***
## Localidad:procedencia:bloque 123   4509      37   1.880 1.00e-06 ***
## Residuals                    517  10082      20                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia",alpha=0.05)
head(tukey)
## $statistics
##       Mean      CV  MSerror      HSD r.harmonic
##   16.35885 26.9947 19.50126 2.618359   63.02449
## 
## $parameters
##    Df ntr StudentizedRange
##   517  13          4.70709
## 
## $means
##          DB14      std  r  Min   Max
## CDZH 19.32891 6.189804 64 4.77 31.83
## EMQ  19.03523 5.775357 65 5.09 31.19
## EPH  20.33788 7.275646 66 2.55 32.15
## GNL  13.90016 5.075290 63 3.18 27.06
## JC   14.41662 4.422612 65 4.14 23.55
## LAH  16.58290 5.666007 62 4.14 25.78
## LLC  12.71633 4.259181 60 3.82 22.60
## MH   18.68290 6.342564 62 3.50 32.79
## PLCC 13.40016 3.644794 62 5.09 23.55
## PSJC 16.21547 7.474826 64 7.00 32.15
## SAC  13.69754 3.644560 61 3.50 21.65
## TLQ  17.04631 6.381608 65 4.14 29.92
## XH   16.77393 5.336377 61 4.77 28.65
## 
## $comparison
## NULL
## 
## $groups
##     trt    means    M
## 1  EPH  20.33788    a
## 2  CDZH 19.32891   ab
## 3  EMQ  19.03523  abc
## 4  MH   18.68290 abcd
## 5  TLQ  17.04631  bcd
## 6  XH   16.77393 bcde
## 7  LAH  16.58290  cde
## 8  PSJC 16.21547  def
## 9  JC   14.41662  efg
## 10 GNL  13.90016   fg
## 11 SAC  13.69754   fg
## 12 PLCC 13.40016    g
## 13 LLC  12.71633    g
par(mfrow=c(2,2),cex=0.6)

bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,30),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,25),bar=FALSE,col="green",space=1,main="Error",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,35),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,25),density=20,col="black",main="Grupos",ylab="Diámetro Basal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

boxplot(POH$DB14 ~ POH$Localidad, xlab = "Localidad", ylab = "Diámetro Basal (cm)")

ANOVA DEL DIAMETRO NORMAL

OMZ1<-read.csv("C:/LUGO/GREMZ.csv", header=T)
SNAMZ<- OMZ1[which(!is.na(OMZ1$DAP14)),] #Eliminar NA
tapply(SNAMZ$DAP14,list(SNAMZ$procedencia,SNAMZ$bloque),mean)#PROMEDIO POR BLOQUES
##              1         2         3         4          5         6
## CDZH 17.190000        NA 19.420000 13.530000 15.8100000 15.600000
## EMQ  14.536667        NA 12.413333  4.140000 14.9600000  7.956667
## EPH  20.580000  5.943333 15.595000 17.350000 19.8400000  2.016667
## GNL  12.520000        NA  8.120000  3.286667  0.9566667 13.370000
## JC   18.780000 16.235000  3.080000 14.320000  6.0500000  4.880000
## LAH         NA  4.986667  5.090000 14.536667  7.0000000  8.280000
## LLC  13.263333        NA 11.460000  6.576667  3.8733333  7.640000
## MH   20.476667 19.310000 11.670000 15.280000  3.8200000 13.156667
## PLCC  7.480000 12.100000 10.500000  3.180000  9.7633333  6.793333
## PSJC  6.683333  8.280000  4.776667 16.550000  3.9233333 17.350000
## SAC  10.623333  9.020000        NA        NA 11.1450000 16.870000
## TLQ  15.120000  7.853333  7.640000  4.986667  2.5500000 13.053333
## XH   15.600000  6.525000 11.036667        NA  9.8650000  7.853333
##              7         8        9        10        11        12
## CDZH  6.473333  5.516667 17.40000 12.095000  3.713333 16.390000
## EMQ  14.643333 17.826667 12.73000 13.690000  7.426667 13.160000
## EPH  11.036667  6.050000 19.73667 17.613333 10.080000 17.296667
## GNL   6.605000 13.050000 10.50500  5.093333  4.986667 14.323333
## JC    6.206667 12.096667 13.15667 12.733333 18.570000 14.960000
## LAH  10.290000 12.575000  4.93500 14.323333 11.456667  7.743333
## LLC   5.730000  8.275000  4.13500 15.700000  2.970000 11.140000
## MH          NA 14.113333 13.68500 15.600000  2.760000  7.000000
## PLCC  6.370000  7.320000 12.94333 11.883333 11.140000  7.426667
## PSJC  5.415000 10.186667 10.18333 18.935000  9.710000 16.023333
## SAC   7.746667  9.760000 11.14333 12.306667  2.270000 11.140000
## TLQ  12.836667  8.755000  6.68500 15.650000  3.025000 13.583333
## XH    6.685000  3.873333 13.05333 10.290000  9.123333  9.550000
library(graphics)
with(SNAMZ, {
  interaction.plot(procedencia, bloque, DAP14, ylim=c(0,17))
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(DAP14, procedencia, mean)))
  interaction.plot(bloque, procedencia,DAP14,col=1:8, cex.axis=1.5,cex.lab=1.5,cex.main=1.5,lwd=2,lty=1,main="a) Interaction in Magdalena Zahuatlán")
})

library(agricolae)
SNAMZ$bloque= factor(SNAMZ$bloque)
modelo <- aov(DAP14~bloque*procedencia,data=SNAMZ)#Modelo Bloque Completos al Azar
summary(modelo)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## bloque              11   1656  150.54  12.749  < 2e-16 ***
## procedencia         12   1110   92.47   7.832 3.52e-12 ***
## bloque:procedencia 123   6018   48.92   4.144  < 2e-16 ***
## Residuals          228   2692   11.81                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia",alpha=0.05)# Modelo de Tukey para las procedencias
head(tukey)
## $statistics
##       Mean       CV MSerror      HSD r.harmonic
##   10.55027 32.56956 11.8073 3.034482   28.75248
## 
## $parameters
##    Df ntr StudentizedRange
##   228  13         4.735293
## 
## $means
##          DAP14      std  r  Min   Max
## CDZH 12.448571 5.927956 28 2.23 22.28
## EMQ  11.952581 4.856948 31 3.50 19.74
## EPH  13.886563 7.586721 32 0.64 28.01
## GNL   8.440667 5.121735 30 0.64 17.51
## JC   10.992581 5.543186 31 2.55 19.42
## LAH   9.465926 4.387266 27 2.23 17.51
## LLC   8.318077 4.955818 26 1.59 20.05
## MH   12.561786 6.665668 28 1.59 24.19
## PLCC  9.026429 4.026096 28 1.27 15.60
## PSJC 10.106429 5.898133 28 3.18 27.37
## SAC   9.930714 4.397813 28 0.76 17.19
## TLQ   9.786207 5.091661 29 0.64 19.10
## XH    9.577241 3.560534 29 2.86 17.83
## 
## $comparison
## NULL
## 
## $groups
##     trt     means    M
## 1  EPH  13.886563    a
## 2  MH   12.561786   ab
## 3  CDZH 12.448571   ab
## 4  EMQ  11.952581  abc
## 5  JC   10.992581 abcd
## 6  PSJC 10.106429  bcd
## 7  SAC   9.930714  bcd
## 8  TLQ   9.786207  bcd
## 9  XH    9.577241  bcd
## 10 LAH   9.465926  bcd
## 11 PLCC  9.026429   cd
## 12 GNL   8.440667    d
## 13 LLC   8.318077    d
par(mfrow=c(2,2),cex=0.6)
bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,25),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Diámetro Normal (cm)",las=1,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,18),bar=FALSE,col="green",space=1,main="Error",ylab="Diámetro Normal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,30),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Diámetro Normal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,18),density=20,col="black",main="Grupos",ylab="Diámetro Normal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

#ANALISIS DE TP
OTP1<-read.csv("C:/LUGO/GRETP.csv", header=T)
SNATP<- OTP1[which(!is.na(OTP1$DAP14)),] #Eliminar NA
tapply(SNATP$DAP14,list(SNATP$procedencia,SNATP$bloque),mean)#PROMEDIO POR BLOQUES
##             1         2         3         4        5         6        7
## CDZH 11.99333 14.643333 20.476667 13.686667 16.55333 18.886667 22.38667
## EMQ  17.98500 17.506667 18.993333 14.963333 17.51000 17.506667 19.31333
## EPH  18.99000 21.963333 18.673333 12.310000 17.08333 16.870000 18.46333
## GNL  15.06667 12.840000 13.050000 11.456667 12.20000  9.653333 11.30000
## JC   11.67333  9.866667 11.353333 12.096667 11.35000 13.366667 13.79333
## LAH  17.40000 14.430000 13.793333 12.943333 13.58000 16.233333 13.68500
## LLC  14.42667  8.063333  7.746667  9.976667 12.84000  9.340000 12.41500
## MH   16.55333 17.823333 16.553333 14.113333 14.32500 14.326667 14.64333
## PLCC 10.71667 11.776667 11.563333 10.606667 10.71333 11.145000 10.71667
## PSJC 10.18333 14.320000  9.123333 19.420000 13.58000 17.400000 13.68667
## SAC  12.94667  9.656667 11.140000 11.990000 11.35667 10.660000 11.67000
## TLQ  12.83667 15.916667 16.020000 15.066667 12.94333 16.973333 17.19000
## XH   18.78000 16.660000 14.536667 14.856667 11.25000 13.793333 15.59500
##             8         9       10        11       12
## CDZH 15.06667 17.510000 15.81000 13.793333 17.19000
## EMQ  20.16333 14.220000 18.46333 15.916667 23.08000
## EPH  25.46000 18.143333 21.64333 14.643333 14.11333
## GNL  12.09500 10.980000 15.81333 14.536667 11.45667
## JC   10.18667 13.370000 13.69000  9.866667 10.18667
## LAH  14.85667 13.686667 18.14333 14.540000 18.67333
## LLC  11.46000  9.866667 14.16500  9.973333 11.24333
## MH   18.14500 17.403333 15.49000 14.536667 18.25000
## PLCC 14.00500 11.563333  9.23000 11.460000 10.40000
## PSJC 17.40333 13.366667 20.16000 14.853333 11.77667
## SAC  12.10000 11.353333 13.89667 10.503333  9.55000
## TLQ  12.73000 16.766667 13.47333 15.810000 18.25000
## XH   16.55000 16.763333 14.74667 14.750000 17.72000
library(graphics)
with(SNATP, {
  interaction.plot(procedencia, bloque, DAP14, ylim=c(0,17))
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(DAP14, procedencia, mean)))
  interaction.plot(bloque, procedencia,DAP14,col=1:8, cex.axis=1.5,cex.lab=1.5,cex.main=1.5,lwd=2,lty=1,main="a) Interaction in Tlacotepec Plumas")
})


library(agricolae)
SNATP$bloque= factor(SNATP$bloque)
modelo <- aov(DAP14~bloque*procedencia,data=SNATP)#Modelo Bloque Completos al Azar
summary(modelo)
##                     Df Sum Sq Mean Sq F value Pr(>F)    
## bloque              11    224   20.36   1.184  0.298    
## procedencia         12   2557  213.11  12.394 <2e-16 ***
## bloque:procedencia 132   1823   13.81   0.803  0.924    
## Residuals          289   4969   17.20                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia",alpha=0.05)# Modelo de Tukey para las procedencias
head(tukey)
## $statistics
##       Mean       CV  MSerror      HSD r.harmonic
##   14.33762 28.92183 17.19513 3.349927    34.2035
## 
## $parameters
##    Df ntr StudentizedRange
##   289  13         4.724631
## 
## $means
##         DAP14      std  r   Min   Max
## CDZH 16.48000 4.158214 35  7.96 26.10
## EMQ  17.81765 3.156667 34 12.10 25.15
## EPH  17.76912 4.142390 34  8.28 26.74
## GNL  12.63545 3.601629 33  5.73 21.65
## JC   11.62765 2.803769 34  6.05 16.23
## LAH  15.20600 4.315154 35  7.00 25.15
## LLC  10.82265 3.131894 34  1.91 18.14
## MH   16.00059 4.275078 34  7.96 26.74
## PLCC 11.07471 2.458252 34  6.68 18.14
## PSJC 14.60611 6.464696 36  6.68 25.78
## SAC  11.38212 2.292005 33  7.00 15.92
## TLQ  15.33139 4.887396 36  5.73 25.78
## XH   15.36606 4.358108 33  5.09 24.19
## 
## $comparison
## NULL
## 
## $groups
##     trt    means   M
## 1  EMQ  17.81765   a
## 2  EPH  17.76912   a
## 3  CDZH 16.48000   a
## 4  MH   16.00059  ab
## 5  XH   15.36606  ab
## 6  TLQ  15.33139  ab
## 7  LAH  15.20600  ab
## 8  PSJC 14.60611 abc
## 9  GNL  12.63545 bcd
## 10 JC   11.62765  cd
## 11 SAC  11.38212  cd
## 12 PLCC 11.07471   d
## 13 LLC  10.82265   d
par(mfrow=c(2,2),cex=0.6)

bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,25),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Diámetro normal (cm) ",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,20),bar=FALSE,col="green",space=1,main="Error",ylab="Diámetro Normal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,30),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Diámetro Normal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,22),density=20,col="black",main="Grupos",ylab="Diámetro Normal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

PO<-read.csv("C:/LUGO/gregtod.csv", header=T)
POH<- PO[which(!is.na(PO$DAP14)),] #Eliminar NA
tapply(POH$DAP14,list(POH$procedencia,POH$bloque),mean)#PROMEDIO POR BLOQUES
##              1         2         3         4         5         6         7
## CDZH 14.591667 14.643333 20.212500 13.624000 16.181667 17.243333 14.430000
## EMQ  15.916000 17.506667 15.703333  9.551667 16.872500 12.731667 16.978333
## EPH  19.785000 13.953333 17.442000 14.326000 18.461667  9.443333 14.750000
## GNL  13.793333 12.840000 11.078000  7.371667  6.578333 11.511667  8.952500
## JC   13.450000 12.414000  7.216667 12.652500  8.700000  9.123333 10.000000
## LAH  17.400000  9.708333  9.441667 13.740000 11.935000 14.245000 11.648000
## LLC  13.845000  8.063333  9.232000  8.276667  8.356667  8.915000  9.072500
## MH   18.515000 18.566667 14.111667 14.696667  8.022000 13.741667 14.643333
## PLCC  9.422000 11.906000 11.297500  6.893333 10.238333  8.534000  9.630000
## PSJC  8.433333 12.810000  6.950000 18.702500  8.751667 17.380000 10.378000
## SAC  11.785000  9.338333 11.140000 11.990000 11.272000 13.765000  9.708333
## TLQ  13.750000 11.885000 13.925000 10.026667  8.786000 15.013333 15.013333
## XH   16.872000 12.606000 12.786667 14.856667 10.696000 10.823333 11.140000
##             8        9       10        11        12
## CDZH 10.29167 17.45500 14.32400  8.753333 16.790000
## EMQ  18.99500 13.47500 16.07667 11.671667 17.128000
## EPH  15.75500 18.94000 19.62833 12.361667 15.705000
## GNL  12.66800 10.74250 10.45333  9.761667 12.890000
## JC   11.14167 13.24200 13.11600 14.218333 12.573333
## LAH  13.94400 10.18600 16.23333 12.998333 13.208333
## LLC  10.18600  7.57400 15.08600  6.471667 11.202000
## MH   15.72600 15.91600 15.51750  8.648333 15.437500
## PLCC 11.77667 12.25333 10.55667 11.300000  8.913333
## PSJC 13.79500 11.77500 19.67000 12.796000 13.900000
## SAC  10.34500 11.24833 13.10167  6.386667 10.345000
## TLQ  11.14000 12.73400 14.56167 10.696000 15.916667
## XH    8.94400 14.90833 12.51833 11.936667 14.452000
library(graphics)
with(POH, {
  interaction.plot(procedencia, Localidad, DAP14, col=1:2,cex.axis=.8,cex.lab=1.5,cex.main=1.5,lty = 1,lwd=2,main="a) Interaction of the localities evaluated")
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(DAP14, procedencia, mean)))
  interaction.plot(Localidad, procedencia,DAP14, col = 1:8,cex.axis=1,cex.lab=1.5,cex.main=1.5,lwd=2,lty = 1,main="b) Interaction of the provenances in the two localities")
})


library(agricolae)
POH$bloque= factor(POH$bloque)
modelo <- aov(DAP14~Localidad+procedencia+bloque+Localidad:procedencia+Localidad:bloque+procedencia:bloque+Localidad:procedencia:bloque,data=POH)
summary(modelo)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Localidad                      1   2919  2919.1 196.983  < 2e-16 ***
## procedencia                   12   3072   256.0  17.278  < 2e-16 ***
## bloque                        11   1255   114.1   7.696 2.23e-12 ***
## Localidad:procedencia         12    573    47.7   3.222 0.000175 ***
## Localidad:bloque              11    647    58.8   3.968 1.46e-05 ***
## procedencia:bloque           132   4152    31.5   2.123 2.27e-09 ***
## Localidad:procedencia:bloque 123   3688    30.0   2.023 4.73e-08 ***
## Residuals                    517   7661    14.8                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia", alpha=0.05)
head(tukey)
## $statistics
##      Mean       CV  MSerror      HSD r.harmonic
##   12.6056 30.53845 14.81907 2.282396    63.0295
## 
## $parameters
##    Df ntr StudentizedRange
##   517  13          4.70709
## 
## $means
##          DAP14      std  r  Min   Max
## CDZH 14.688254 5.372418 63 2.23 26.10
## EMQ  15.020462 4.991119 65 3.50 25.15
## EPH  15.886667 6.323418 66 0.64 28.01
## GNL  10.637937 4.839922 63 0.64 21.65
## JC   11.324769 4.307994 65 2.55 19.42
## LAH  12.706290 5.178372 62 2.23 25.15
## LLC   9.737333 4.178461 60 1.59 20.05
## MH   14.447581 5.703514 62 1.59 26.74
## PLCC 10.149677 3.391151 62 1.27 18.14
## PSJC 12.637500 6.571823 64 3.18 27.37
## SAC  10.715902 3.469426 61 0.76 17.19
## TLQ  12.857385 5.667629 65 0.64 25.78
## XH   12.658387 4.925671 62 2.86 24.19
## 
## $comparison
## NULL
## 
## $groups
##     trt     means   M
## 1  EPH  15.886667   a
## 2  EMQ  15.020462  ab
## 3  CDZH 14.688254 abc
## 4  MH   14.447581 abc
## 5  TLQ  12.857385 bcd
## 6  LAH  12.706290  cd
## 7  XH   12.658387  cd
## 8  PSJC 12.637500  cd
## 9  JC   11.324769  de
## 10 SAC  10.715902  de
## 11 GNL  10.637937  de
## 12 PLCC 10.149677   e
## 13 LLC   9.737333   e
par(mfrow=c(2,2),cex=0.6)

bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,25),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Diámetro Normal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,20),bar=FALSE,col="green",space=1,main="Error",ylab="Diámetro Normal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,30),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Diámetro Normal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,20),density=20,col="black",main="Grupos",ylab="Diámetro Normal (cm)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

boxplot(POH$DAP14 ~ POH$Localidad, xlab = "Localidades", ylab = "Diamétro Normal (cm)")

ANOVA DEL DIAMETRO DE COPA

OMZ1<-read.csv("C:/LUGO/GREMZ.csv", header=T)
SNAMZ<- OMZ1[which(!is.na(OMZ1$DC14)),] #Eliminar NA
tapply(SNAMZ$DC14,list(SNAMZ$procedencia,SNAMZ$bloque),mean)#PROMEDIO POR BLOQUES
##             1        2        3        4        5        6        7
## CDZH 4.541667       NA 6.450000 3.975000 3.375000 4.633333 2.800000
## EMQ  4.875000       NA 3.941667 1.983333 4.650000 2.691667 3.866667
## EPH  4.860000 2.600000 4.150000 5.600000 5.700000 1.675000 3.266667
## GNL  4.016667       NA 2.812500 1.200000 1.583333 3.958333 3.100000
## JC   4.900000 4.540000 2.000000 4.100000 2.558333 2.600000 2.725000
## LAH        NA 2.550000 2.666667 4.383333 2.600000 2.800000 3.800000
## LLC  4.808333       NA 4.425000 2.583333 1.650000 2.700000 2.175000
## MH   5.016667 5.250000 4.266667 4.600000 2.458333 4.791667       NA
## PLCC 3.225000 3.290000 3.900000 1.900000 3.350000 1.958333 2.050000
## PSJC 2.358333 2.000000 2.516667 5.300000 2.866667 4.537500 2.350000
## SAC  3.375000 3.166667       NA       NA 3.525000 5.200000 3.075000
## TLQ  4.150000 3.576667 3.150000 2.093333 1.737500 3.433333 3.208333
## XH   4.000000 2.562500 3.966667       NA 3.600000 2.991667 2.375000
##             8        9       10       11       12
## CDZH 3.058333 4.375000 3.875000 2.666667 4.550000
## EMQ  4.716667 3.941667 3.925000 3.200000 3.916667
## EPH  2.925000 5.708333 4.383333 3.318333 5.250000
## GNL  4.000000 4.725000 2.175000 2.650000 4.525000
## JC   4.008333 3.800000 3.450000 4.816667 4.316667
## LAH  3.675000 1.812500 4.333333 3.725000 2.850000
## LLC  3.312500 2.987500 4.416667 2.791667 3.275000
## MH   4.100000 4.637500 5.525000 1.841667 3.775000
## PLCC 2.750000 3.850000 2.766667 3.675000 2.783333
## PSJC 3.100000 3.541667 5.575000 3.237500 4.716667
## SAC  3.525000 2.991667 3.616667 1.866667 3.616667
## TLQ  3.075000 2.350000 4.866667 1.765000 4.000000
## XH   2.283333 3.983333 3.016667 3.500000 2.940000
library(graphics)
with(SNAMZ, {
  interaction.plot(procedencia, bloque, DC14, ylim=c(0,17))
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(DC14, procedencia, mean)))
  interaction.plot(bloque, procedencia,DC14,col=1:8, cex.axis=1.5,cex.lab=1.5,cex.main=1.5,lwd=2,lty=1,main="a) Interaction in Magdalena Zahuatlán")
})

library(agricolae)
SNAMZ$bloque= factor(SNAMZ$bloque)
modelo <- aov(DC14~bloque*procedencia,data=SNAMZ)#Modelo Bloque Completos al Azar
summary(modelo)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## bloque              11  56.04   5.095   6.030 1.23e-08 ***
## procedencia         12  52.69   4.391   5.197 1.06e-07 ***
## bloque:procedencia 123 281.94   2.292   2.713 3.82e-11 ***
## Residuals          228 192.65   0.845                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia",alpha=0.05)# Modelo de Tukey para las procedencias
head(tukey)
## $statistics
##       Mean       CV   MSerror      HSD r.harmonic
##   3.482773 26.39317 0.8449551 0.811757   28.75248
## 
## $parameters
##    Df ntr StudentizedRange
##   228  13         4.735293
## 
## $means
##          DC14       std  r   Min   Max
## CDZH 3.842857 1.2116689 28 1.450 6.450
## EMQ  3.736290 1.0036566 31 1.550 5.650
## EPH  4.147188 1.7523031 32 1.000 7.875
## GNL  3.120000 1.3320389 30 0.850 5.550
## JC   3.513065 1.0622223 31 1.550 5.350
## LAH  3.307407 1.0288346 27 1.250 4.900
## LLC  3.223077 1.1400641 26 1.400 5.275
## MH   4.126786 1.3998004 28 1.100 6.050
## PLCC 2.949286 0.9406880 28 1.225 4.925
## PSJC 3.428571 1.4759760 28 1.900 8.150
## SAC  3.326786 1.0659053 28 1.350 6.200
## TLQ  3.201379 1.2254867 29 1.175 5.400
## XH   3.247586 0.7086703 29 1.825 4.350
## 
## $comparison
## NULL
## 
## $groups
##     trt    means    M
## 1  EPH  4.147188    a
## 2  MH   4.126786   ab
## 3  CDZH 3.842857  abc
## 4  EMQ  3.736290 abcd
## 5  JC   3.513065 abcd
## 6  PSJC 3.428571 abcd
## 7  SAC  3.326786  bcd
## 8  LAH  3.307407  bcd
## 9  XH   3.247586   cd
## 10 LLC  3.223077   cd
## 11 TLQ  3.201379   cd
## 12 GNL  3.120000   cd
## 13 PLCC 2.949286    d
par(mfrow=c(2,2),cex=0.6)
bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,6),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,5),bar=FALSE,col="green",space=1,main="Error",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,10),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,5),density=20,col="black",main="Grupos",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

plot(modelo)
## Warning: not plotting observations with leverage one:
##   23, 36, 67, 68, 78, 87, 88, 126, 131, 141, 142, 181, 226, 235, 298, 361
## Warning: not plotting observations with leverage one:
##   23, 36, 67, 68, 78, 87, 88, 126, 131, 141, 142, 181, 226, 235, 298, 361

#ANALISIS DE TP
OTP1<-read.csv("C:/LUGO/GRETP.csv", header=T)
SNATP<- OTP1[which(!is.na(OTP1$DC14)),] #Eliminar NA
tapply(SNATP$DC14,list(SNATP$procedencia,SNATP$bloque),mean)#PROMEDIO POR BLOQUES
##             1        2        3        4        5        6        7
## CDZH 3.456667 3.666667 5.940000 3.870000 4.776667 5.133333 6.093333
## EMQ  5.890000 4.416667 5.310000 3.560000 4.783333 5.366667 5.016667
## EPH  4.033333 4.916667 5.363333 4.500000 4.523333 5.100000 4.576667
## GNL  3.516667 3.046667 3.576667 3.090000 3.733333 3.590000 3.265000
## JC   3.703333 4.006667 3.370000 3.443333 3.853333 4.026667 3.783333
## LAH  4.546667 4.000000 4.556667 4.176667 4.060000 4.746667 4.250000
## LLC  4.886667 3.880000 2.703333 2.736667 3.690000 3.353333 4.500000
## MH   4.416667 4.226667 5.030000 4.866667 4.935000 4.470000 3.920000
## PLCC 3.246667 3.280000 3.980000 3.456667 3.536667 3.720000 4.126667
## PSJC 3.016667 3.510000 3.326667 5.316667 4.803333 4.790000 3.530000
## SAC  3.336667 3.516667 3.473333 4.216667 3.603333 3.940000 3.100000
## TLQ  3.296667 5.330000 4.683333 4.503333 4.653333 5.086667 5.146667
## XH   4.775000 4.160000 4.543333 4.093333 4.093333 3.796667 4.850000
##             8        9       10       11       12
## CDZH 5.526667 5.120000 4.886667 4.233333 4.775000
## EMQ  5.540000 4.043333 5.420000 4.583333 6.050000
## EPH  6.350000 5.263333 6.416667 4.243333 4.220000
## GNL  4.475000 3.510000 4.256667 3.956667 3.433333
## JC   3.003333 3.815000 4.570000 2.980000 3.223333
## LAH  4.200000 4.026667 4.483333 4.323333 4.513333
## LLC  3.373333 3.326667 4.125000 3.450000 3.413333
## MH   5.625000 4.733333 3.930000 4.396667 5.093333
## PLCC 4.140000 3.653333 3.383333 3.430000 2.966667
## PSJC 4.330000 4.020000 5.143333 3.963333 3.123333
## SAC  5.460000 3.393333 4.316667 3.930000 3.600000
## TLQ  3.713333 5.053333 4.133333 4.410000 5.593333
## XH   5.430000 5.430000 4.726667 5.030000 4.266667
library(graphics)
with(SNATP, {
  interaction.plot(procedencia, bloque, DC14, ylim=c(0,17))
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(DC14, procedencia, mean)))
  interaction.plot(bloque, procedencia,DC14,col=1:8, cex.axis=1.5,cex.lab=1.5,cex.main=1.5,lwd=2,lty=1,main="a) Interaction in Tlacotepec Plumas")
})

library(agricolae)
SNATP$bloque= factor(SNATP$bloque)
modelo <- aov(DC14~bloque*procedencia, data=SNATP)#Modelo Bloque Completos al Azar
summary(modelo)
##                     Df Sum Sq Mean Sq F value  Pr(>F)    
## bloque              11  19.28   1.753   1.657  0.0827 .  
## procedencia         12 119.09   9.924   9.381 2.5e-15 ***
## bloque:procedencia 132 129.54   0.981   0.928  0.6857    
## Residuals          289 305.71   1.058                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia",alpha=0.05)# Modelo de Tukey para las procedencias
head(tukey)
## $statistics
##      Mean       CV  MSerror       HSD r.harmonic
##   4.22618 24.33632 1.057805 0.8308746    34.2035
## 
## $parameters
##    Df ntr StudentizedRange
##   289  13         4.724631
## 
## $means
##          DC14       std  r  Min  Max
## CDZH 4.790286 1.1923074 35 2.40 7.10
## EMQ  4.941176 0.9034472 34 2.56 6.71
## EPH  4.877059 1.1407162 34 2.24 7.25
## GNL  3.609091 0.8165758 33 2.20 5.51
## JC   3.616176 0.6507293 34 2.18 4.94
## LAH  4.325714 0.9231350 35 2.79 6.10
## LLC  3.579118 0.9260518 34 1.19 5.51
## MH   4.599118 0.8961749 34 2.65 6.71
## PLCC 3.555882 0.6747350 34 2.40 5.00
## PSJC 4.072778 1.3735161 36 1.89 7.30
## SAC  3.721212 0.7776718 33 2.20 5.46
## TLQ  4.633611 1.4799211 36 1.51 8.30
## XH   4.561515 1.0835910 33 2.25 7.70
## 
## $comparison
## NULL
## 
## $groups
##     trt    means    M
## 1  EMQ  4.941176    a
## 2  EPH  4.877059   ab
## 3  CDZH 4.790286   ab
## 4  TLQ  4.633611   ab
## 5  MH   4.599118   ab
## 6  XH   4.561515  abc
## 7  LAH  4.325714 abcd
## 8  PSJC 4.072778  bcd
## 9  SAC  3.721212   cd
## 10 JC   3.616176    d
## 11 GNL  3.609091    d
## 12 LLC  3.579118    d
## 13 PLCC 3.555882    d
par(mfrow=c(2,2),cex=0.6)

bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,7),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,6),bar=FALSE,col="green",space=0.5,main="Error",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,9),bar=FALSE,col="blue", space=0.5,main="Rangos de valores = Max - Min",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,6),density=20,col="black",main="Grupos",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

plot(modelo)
## Warning: not plotting observations with leverage one:
##   285, 288
## Warning: not plotting observations with leverage one:
##   285, 288

PO<-read.csv("C:/LUGO/gregtod.csv", header=T)
POH<- PO[which(!is.na(PO$DC14)),] #Eliminar NA
tapply(POH$DC14,list(POH$procedencia,POH$bloque),mean)#PROMEDIO POR BLOQUES
##             1        2        3        4        5        6        7
## CDZH 3.999167 3.666667 6.067500 3.912000 4.075833 4.883333 4.446667
## EMQ  5.281000 4.416667 4.625833 2.771667 4.750000 4.029167 4.441667
## EPH  4.446667 3.758333 4.878000 4.940000 5.111667 3.387500 3.921667
## GNL  3.766667 3.046667 3.271000 2.145000 2.658333 3.774167 3.182500
## JC   4.002500 4.220000 2.685000 3.607500 3.205833 3.313333 3.254167
## LAH  4.546667 3.275000 3.611667 4.280000 3.695000 4.260000 3.980000
## LLC  4.847500 3.880000 3.392000 2.660000 2.670000 3.190000 3.337500
## MH   4.716667 4.738333 4.648333 4.733333 3.449000 4.630833 3.920000
## PLCC 3.238000 3.284000 3.960000 2.678333 3.443333 2.663000 3.607500
## PSJC 2.687500 3.132500 2.921667 5.312500 3.835000 4.689000 3.058000
## SAC  3.355833 3.341667 3.473333 4.216667 3.572000 4.570000 3.087500
## TLQ  3.638000 4.453333 4.300000 3.298333 3.487000 4.260000 4.177500
## XH   4.310000 3.521000 4.255000 4.093333 3.896000 3.394167 3.612500
##             8        9       10       11       12
## CDZH 4.292500 4.747500 4.482000 3.450000 4.662500
## EMQ  5.128333 3.992500 4.672500 3.891667 4.770000
## EPH  4.637500 5.485833 5.400000 3.780833 4.735000
## GNL  4.190000 4.117500 3.215833 3.303333 3.979167
## JC   3.505833 3.806000 3.898000 3.898333 3.770000
## LAH  3.990000 3.141000 4.408333 4.024167 3.681667
## LLC  3.349000 3.191000 4.300000 3.120833 3.358000
## MH   4.710000 4.695000 4.328750 3.119167 4.763750
## PLCC 3.676667 3.751667 3.075000 3.552500 2.875000
## PSJC 3.715000 3.780833 5.316000 3.673000 3.920000
## SAC  4.008750 3.192500 3.966667 2.898333 3.608333
## TLQ  3.458000 3.972000 4.500000 3.352000 4.796667
## XH   3.542000 4.706667 3.871667 4.265000 3.736000
library(graphics)
with(POH, {
  interaction.plot(procedencia, Localidad, DC14, col=1:2,cex.axis=.8,cex.lab=1.5,cex.main=1.5,lty = 1,lwd=2,main="a) Interaction of the localities evaluated")
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(DC14, procedencia, mean)))
  interaction.plot(Localidad, procedencia,DC14, col = 1:8,cex.axis=1,cex.lab=1.5,cex.main=1.5,lwd=2,lty = 1,main="b) Interaction of the provenances in the two localities")
})

library(agricolae)
POH$bloque= factor(POH$bloque)
modelo <- aov(DC14~Localidad+procedencia+bloque+Localidad:procedencia+Localidad:bloque+procedencia:bloque+Localidad:procedencia:bloque,data=POH)
summary(modelo)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Localidad                      1  112.5  112.47 116.676  < 2e-16 ***
## procedencia                   12  141.0   11.75  12.194  < 2e-16 ***
## bloque                        11   39.1    3.55   3.685 4.60e-05 ***
## Localidad:procedencia         12   31.3    2.61   2.705 0.001497 ** 
## Localidad:bloque              11   35.7    3.25   3.366 0.000165 ***
## procedencia:bloque           132  224.9    1.70   1.767 6.04e-06 ***
## Localidad:procedencia:bloque 123  186.6    1.52   1.574 0.000378 ***
## Residuals                    517  498.4    0.96                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia", alpha=0.05)
head(tukey)
## $statistics
##       Mean       CV   MSerror       HSD r.harmonic
##   3.886207 25.26378 0.9639371 0.5821099    63.0295
## 
## $parameters
##    Df ntr StudentizedRange
##   517  13          4.70709
## 
## $means
##          DC14       std  r   Min   Max
## CDZH 4.369206 1.2822429 63 1.450 7.100
## EMQ  4.366538 1.1228844 65 1.550 6.710
## EPH  4.523182 1.5033805 66 1.000 7.875
## GNL  3.376190 1.1111748 63 0.850 5.550
## JC   3.567000 0.8659865 65 1.550 5.350
## LAH  3.882258 1.0886914 62 1.250 6.100
## LLC  3.424833 1.0305601 60 1.190 5.510
## MH   4.385806 1.1653031 62 1.100 6.710
## PLCC 3.281935 0.8547449 62 1.225 5.000
## PSJC 3.790938 1.4441180 64 1.890 8.150
## SAC  3.540164 0.9343933 61 1.350 6.200
## TLQ  3.994615 1.5393463 65 1.175 8.300
## XH   3.946935 1.1328433 62 1.825 7.700
## 
## $comparison
## NULL
## 
## $groups
##     trt    means     M
## 1  EPH  4.523182     a
## 2  MH   4.385806    ab
## 3  CDZH 4.369206   abc
## 4  EMQ  4.366538   abc
## 5  TLQ  3.994615  abcd
## 6  XH   3.946935 abcde
## 7  LAH  3.882258  bcde
## 8  PSJC 3.790938  cdef
## 9  JC   3.567000   def
## 10 SAC  3.540164   def
## 11 LLC  3.424833   def
## 12 GNL  3.376190    ef
## 13 PLCC 3.281935     f
par(mfrow=c(2,2),cex=0.6)

bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,6),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,5),bar=FALSE,col="green",space=1,main="Error",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,9),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,5),density=20,col="black",main="Grupos",ylab="Diámetro de Copa (m)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

boxplot(POH$DC14 ~ POH$Localidad, xlab = "Localidad", ylab = "Diamétro de Copa (m)")
plot(modelo)
## Warning: not plotting observations with leverage one:
##   23, 36, 67, 68, 78, 87, 88, 126, 131, 141, 142, 181, 226, 235, 298, 361, 660, 663
## Warning: not plotting observations with leverage one:
##   23, 36, 67, 68, 78, 87, 88, 126, 131, 141, 142, 181, 226, 235, 298, 361, 660, 663

ANOVA DEL AREA DE COPA

OMZ1<-read.csv("C:/LUGO/GREMZ.csv", header=T)
SNAMZ<- OMZ1[which(!is.na(OMZ1$AC14)),] #Eliminar NA
tapply(SNAMZ$AC14,list(SNAMZ$procedencia,SNAMZ$bloque),mean)#PROMEDIO POR BLOQUES
##              1         2         3         4         5         6         7
## CDZH 16.253333        NA 32.670000 12.625000  9.056667 17.650000  6.383333
## EMQ  18.710000        NA 12.536667  3.176667 16.980000  5.933333 11.756667
## EPH  19.776667  6.346667 13.580000 25.015000 28.853333  2.323333  9.140000
## GNL  13.316667        NA  6.900000  1.300000  2.053333 13.466667  7.555000
## JC   18.860000 16.705000  3.236667 13.200000  5.146667  5.460000  5.840000
## LAH         NA  5.416667  6.196667 15.206667  5.310000  6.160000 11.993333
## LLC  18.386667        NA 15.595000  5.613333  2.216667  5.730000  3.840000
## MH   19.840000 21.876667 16.056667 16.886667  4.960000 18.660000        NA
## PLCC  8.310000  8.530000 11.950000  3.153333  9.380000  3.130000  3.300000
## PSJC  4.586667  3.140000  4.996667 22.060000  6.496667 16.170000  4.340000
## SAC   9.340000  9.170000        NA        NA  9.820000 22.020000  7.933333
## TLQ  13.535000 10.193333  7.790000  3.606667  2.615000  9.353333 10.000000
## XH   12.593333  5.175000 12.380000        NA 10.210000  7.110000  4.490000
##              8         9        10        11       12
## CDZH  8.450000 16.546667 11.875000  6.173333 16.33000
## EMQ  17.826667 12.316667 12.346667  8.283333 12.65667
## EPH   6.720000 27.933333 15.646667  9.226667 21.79333
## GNL  12.636667 17.645000  3.813333  5.690000 16.25333
## JC   12.893333 11.883333  9.536667 18.310000 14.89667
## LAH  10.965000  2.830000 15.210000 11.040000  6.45000
## LLC   8.625000  7.010000 15.556667  6.493333  8.48500
## MH   13.933333 17.290000 23.970000  3.226667 11.19000
## PLCC  5.940000 11.746667  6.356667 11.693333  6.27000
## PSJC  8.930000 11.300000 29.620000  8.365000 17.86000
## SAC  10.403333  7.306667 10.420000  2.923333 10.43667
## TLQ   7.645000  4.750000 18.880000  2.535000 13.46667
## XH    4.193333 12.630000  7.246667  9.813333  6.81000
library(graphics)
with(SNAMZ, {
  interaction.plot(procedencia, bloque, AC14, ylim=c(0,17))
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(AC14, procedencia, mean)))
  interaction.plot(bloque, procedencia,AC14,col=1:8, cex.axis=1.5,cex.lab=1.5,cex.main=1.5,lwd=2,lty=1,main="a) Interaction in Magdalena Zahuatlán")
})

library(agricolae)
SNAMZ$bloque= factor(SNAMZ$bloque)
modelo <- aov(AC14~bloque*procedencia,data=SNAMZ)#Modelo Bloque Completos al Azar
summary(modelo)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## bloque              11   1616  146.88   4.235 1.00e-05 ***
## procedencia         12   2249  187.43   5.404 4.62e-08 ***
## bloque:procedencia 123   9559   77.72   2.241 7.62e-08 ***
## Residuals          228   7908   34.69                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia",alpha=0.05)# Modelo de Tukey para las procedencias
head(tukey)
## $statistics
##       Mean       CV  MSerror      HSD r.harmonic
##   10.74837 54.79369 34.68538 5.200948   28.75248
## 
## $parameters
##    Df ntr StudentizedRange
##   228  13         4.735293
## 
## $means
##           AC14       std  r  Min   Max
## CDZH 12.709643  7.491431 28 1.65 32.67
## EMQ  11.729355  5.670569 31 1.89 25.07
## EPH  15.844688 12.374350 32 0.79 48.71
## GNL   8.993000  6.768025 30 0.57 24.19
## JC   10.550968  5.979884 31 1.89 22.48
## LAH   9.392593  5.384387 27 1.23 18.86
## LLC   9.140000  6.099204 26 1.54 21.85
## MH   14.859286  8.208843 28 0.95 28.75
## PLCC  7.502143  4.550713 28 1.18 19.05
## PSJC 10.882143 10.492061 28 2.84 52.17
## SAC   9.552857  5.872496 28 1.43 30.19
## TLQ   9.187931  6.531005 29 1.08 22.90
## XH    8.664483  3.584177 29 2.62 14.86
## 
## $comparison
## NULL
## 
## $groups
##     trt     means   M
## 1  EPH  15.844688   a
## 2  MH   14.859286  ab
## 3  CDZH 12.709643 abc
## 4  EMQ  11.729355 abc
## 5  PSJC 10.882143 abc
## 6  JC   10.550968  bc
## 7  SAC   9.552857   c
## 8  LAH   9.392593   c
## 9  TLQ   9.187931   c
## 10 LLC   9.140000   c
## 11 GNL   8.993000   c
## 12 XH    8.664483   c
## 13 PLCC  7.502143   c
par(mfrow=c(2,2),cex=0.6)
bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,30),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Área de Copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,20),bar=FALSE,col="green",space=1,main="Error",ylab="Área de Copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,55),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Área de Copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,20),density=20,col="black",main="Grupos",ylab="Área de Copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

plot(modelo)
## Warning: not plotting observations with leverage one:
##   23, 36, 67, 68, 78, 87, 88, 126, 131, 141, 142, 181, 226, 235, 298, 361
## Warning: not plotting observations with leverage one:
##   23, 36, 67, 68, 78, 87, 88, 126, 131, 141, 142, 181, 226, 235, 298, 361

#ANALISIS DE TP
OTP1<-read.csv("C:/LUGO/GRETP.csv", header=T)
SNATP<- OTP1[which(!is.na(OTP1$AC14)),] #Eliminar NA
tapply(SNATP$DC14,list(SNATP$procedencia,SNATP$bloque),mean)#PROMEDIO POR BLOQUES
##             1        2        3        4        5        6        7
## CDZH 3.456667 3.666667 5.940000 3.870000 4.776667 5.133333 6.093333
## EMQ  5.890000 4.416667 5.310000 3.560000 4.783333 5.366667 5.016667
## EPH  4.033333 4.916667 5.363333 4.500000 4.523333 5.100000 4.576667
## GNL  3.516667 3.046667 3.576667 3.090000 3.733333 3.590000 3.265000
## JC   3.703333 4.006667 3.370000 3.443333 3.853333 4.026667 3.783333
## LAH  4.546667 4.000000 4.556667 4.176667 4.060000 4.746667 4.250000
## LLC  4.886667 3.880000 2.703333 2.736667 3.690000 3.353333 4.500000
## MH   4.416667 4.226667 5.030000 4.866667 4.935000 4.470000 3.920000
## PLCC 3.246667 3.280000 3.980000 3.456667 3.536667 3.720000 4.126667
## PSJC 3.016667 3.510000 3.326667 5.316667 4.803333 4.790000 3.530000
## SAC  3.336667 3.516667 3.473333 4.216667 3.603333 3.940000 3.100000
## TLQ  3.296667 5.330000 4.683333 4.503333 4.653333 5.086667 5.146667
## XH   4.775000 4.160000 4.543333 4.093333 4.093333 3.796667 4.850000
##             8        9       10       11       12
## CDZH 5.526667 5.120000 4.886667 4.233333 4.775000
## EMQ  5.540000 4.043333 5.420000 4.583333 6.050000
## EPH  6.350000 5.263333 6.416667 4.243333 4.220000
## GNL  4.475000 3.510000 4.256667 3.956667 3.433333
## JC   3.003333 3.815000 4.570000 2.980000 3.223333
## LAH  4.200000 4.026667 4.483333 4.323333 4.513333
## LLC  3.373333 3.326667 4.125000 3.450000 3.413333
## MH   5.625000 4.733333 3.930000 4.396667 5.093333
## PLCC 4.140000 3.653333 3.383333 3.430000 2.966667
## PSJC 4.330000 4.020000 5.143333 3.963333 3.123333
## SAC  5.460000 3.393333 4.316667 3.930000 3.600000
## TLQ  3.713333 5.053333 4.133333 4.410000 5.593333
## XH   5.430000 5.430000 4.726667 5.030000 4.266667
library(graphics)
with(SNATP, {
  interaction.plot(procedencia, bloque, AC14, ylim=c(0,17))
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(AC14, procedencia, mean)))
  interaction.plot(bloque, procedencia,AC14,col=1:8, cex.axis=1.5,cex.lab=1.5,cex.main=1.5,lwd=2,lty=1,main="a) Interaction in Tlacotepec Plumas")
})

library(agricolae)
SNATP$bloque= factor(SNATP$bloque)
modelo <- aov(AC14~bloque*procedencia,data=SNATP)#Modelo Bloque Completos al Azar
summary(modelo)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## bloque              11   1070    97.2   1.858   0.0446 *  
## procedencia         12   5863   488.5   9.336 2.99e-15 ***
## bloque:procedencia 132   6606    50.0   0.956   0.6106    
## Residuals          289  15123    52.3                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia", alpha=0.05)# Modelo de Tukey para las procedencias
head(tukey)
## $statistics
##       Mean      CV  MSerror      HSD r.harmonic
##   15.03987 48.0979 52.32873 5.843899    34.2035
## 
## $parameters
##    Df ntr StudentizedRange
##   289  13         4.724631
## 
## $means
##          AC14       std  r  Min   Max
## CDZH 19.10657  9.243338 35 4.52 39.59
## EMQ  19.79765  6.751448 34 5.15 35.36
## EPH  19.67294  8.746685 34 3.94 41.28
## GNL  10.73758  4.787483 33 3.80 23.84
## JC   10.59265  3.729349 34 3.73 19.17
## LAH  15.34657  6.372436 35 6.11 29.22
## LLC  10.71353  5.242028 34 1.11 23.84
## MH   17.22529  6.544515 34 5.52 35.36
## PLCC 10.27735  3.841738 34 4.52 19.64
## PSJC 14.46833  9.570207 36 2.81 41.85
## SAC  11.33606  4.608616 33 3.80 23.41
## TLQ  18.53528 11.181880 36 1.79 54.11
## XH   17.23697  8.075567 33 3.98 46.57
## 
## $comparison
## NULL
## 
## $groups
##     trt    means   M
## 1  EMQ  19.79765   a
## 2  EPH  19.67294   a
## 3  CDZH 19.10657   a
## 4  TLQ  18.53528   a
## 5  XH   17.23697  ab
## 6  MH   17.22529  ab
## 7  LAH  15.34657 abc
## 8  PSJC 14.46833 abc
## 9  SAC  11.33606  bc
## 10 GNL  10.73758   c
## 11 LLC  10.71353   c
## 12 JC   10.59265   c
## 13 PLCC 10.27735   c
par(mfrow=c(2,2),cex=0.6)

bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,30),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Área de copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,25),bar=FALSE,col="green",space=0.5,main="Error",ylab="Área de Copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,55),bar=FALSE,col="blue", space=0.5,main="Rangos de valores = Max - Min",ylab="Área de Copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,25),density=20,col="black",main="Grupos",ylab="Área de Copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

plot(modelo)
## Warning: not plotting observations with leverage one:
##   285, 288
## Warning: not plotting observations with leverage one:
##   285, 288

PO<-read.csv("C:/LUGO/gregtod.csv", header=T)
POH<- PO[which(!is.na(PO$AC14)),] #Eliminar NA
tapply(POH$AC14,list(POH$procedencia,POH$bloque),mean)#PROMEDIO POR BLOQUES
##              1         2         3         4         5        6         7
## CDZH 12.948333 11.220000 29.185000 12.302000 13.936667 19.29667 17.936667
## EMQ  22.336000 15.700000 17.356667  7.013333 17.875000 14.31333 15.778333
## EPH  16.460000 13.446667 19.196000 20.088000 22.630000 11.59333 12.796667
## GNL  11.695000  7.546667  8.874000  4.441667  6.580000 11.97167  8.037500
## JC   12.830000 14.460000  6.270000 10.357500  8.601667  9.15000  8.560000
## LAH  16.246667  9.266667 11.643333 15.140000 12.082500 15.00250 12.872000
## LLC  18.806667 13.066667 10.222000  5.820000  6.480000  8.11000  9.897500
## MH   17.853333 18.648333 18.005000 17.876667 10.642000 17.63500 12.203333
## PLCC  8.410000  8.646000 12.512500  6.360000  9.863333  6.33400 11.107500
## PSJC  5.970000  8.580000  7.041667 22.425000 12.341667 17.40400  8.276000
## SAC   9.263333  9.840000  9.610000 14.050000 10.048000 17.36250  7.821667
## TLQ  10.630000 16.461667 15.057500  9.885000 12.598000 17.88167 16.250000
## XH   14.764000 10.322000 14.785000 13.286667 12.790000  9.69500 11.487500
##             8         9        10        11        12
## CDZH 16.81167 19.131667 16.452000 10.263333 17.120000
## EMQ  21.23500 12.586667 17.755000 12.448333 19.106000
## EPH  19.19500 25.163333 24.135000 11.708333 18.916667
## GNL  14.20800 14.190000  9.410000  9.026667 13.070000
## JC   10.14167 11.708000 12.298000 12.646667 11.655000
## LAH  12.98600  8.954000 16.188333 13.120000 11.240000
## LLC   8.92600  8.464000 14.688000  7.935000  8.984000
## MH   18.67000 17.606000 15.350000  9.225000 18.415000
## PLCC 10.98667 11.288333  7.838333 10.508333  6.658333
## PSJC 11.87167 14.118333 25.656000 11.432000 13.273333
## SAC  13.65500  8.368333 12.623333  7.768333 10.361667
## TLQ  11.08400 14.030000 16.526667 10.444000 19.588333
## XH   11.78000 19.658333 12.406667 14.860000 11.514000
library(graphics)
with(POH, {
  interaction.plot(procedencia, Localidad, AC14, col=1:2,cex.axis=.8,cex.lab=1.5,cex.main=1.5,lty = 1,lwd=2,main="a) Interaction of the localities evaluated")
  ## order the rows by their mean effect
  rowpos <- factor(procedencia,
                   levels = sort.list(tapply(AC14, procedencia, mean)))
  interaction.plot(Localidad, procedencia,AC14, col = 1:8,cex.axis=1,cex.lab=1.5,cex.main=1.5,lwd=2,lty = 1,main="b) Interaction of the provenances in the two localities")
})

library(agricolae)
POH$bloque= factor(POH$bloque)
modelo <- aov(AC14~Localidad+procedencia+bloque+Localidad:procedencia+Localidad:bloque+procedencia:bloque+Localidad:procedencia:bloque, data=POH)
summary(modelo)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Localidad                      1   3748    3748  84.133  < 2e-16 ***
## procedencia                   12   6445     537  12.056  < 2e-16 ***
## bloque                        11   1494     136   3.049 0.000572 ***
## Localidad:procedencia         12   1737     145   3.250 0.000156 ***
## Localidad:bloque              11   1121     102   2.287 0.009815 ** 
## procedencia:bloque           132   9206      70   1.566 0.000320 ***
## Localidad:procedencia:bloque 123   6959      57   1.270 0.039781 *  
## Residuals                    517  23031      45                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey<-HSD.test(modelo,"procedencia", alpha=0.05)
head(tukey)
## $statistics
##       Mean       CV  MSerror      HSD r.harmonic
##   13.07729 51.03826 44.54791 3.957257    63.0295
## 
## $parameters
##    Df ntr StudentizedRange
##   517  13          4.70709
## 
## $means
##           AC14       std  r  Min   Max
## CDZH 16.263492  9.031095 63 1.65 39.59
## EMQ  15.949692  7.420881 65 1.89 35.36
## EPH  17.816818 10.751103 66 0.79 48.71
## GNL   9.906825  5.833227 63 0.57 24.19
## JC   10.572769  4.892220 65 1.89 22.48
## LAH  12.753710  6.621843 62 1.23 29.22
## LLC  10.031667  5.634773 60 1.11 23.84
## MH   16.156774  7.376043 62 0.95 35.36
## PLCC  9.024032  4.369131 62 1.18 19.64
## PSJC 12.899375 10.063621 64 2.81 52.17
## SAC  10.517541  5.258252 61 1.43 30.19
## TLQ  14.364923 10.438706 65 1.08 54.11
## XH   13.227258  7.661791 62 2.62 46.57
## 
## $comparison
## NULL
## 
## $groups
##     trt     means    M
## 1  EPH  17.816818    a
## 2  CDZH 16.263492   ab
## 3  MH   16.156774   ab
## 4  EMQ  15.949692   ab
## 5  TLQ  14.364923  abc
## 6  XH   13.227258  bcd
## 7  PSJC 12.899375 bcde
## 8  LAH  12.753710 bcde
## 9  JC   10.572769  cde
## 10 SAC  10.517541  cde
## 11 LLC  10.031667   de
## 12 GNL   9.906825   de
## 13 PLCC  9.024032    e
par(mfrow=c(2,2),cex=0.6)

bar.err(tukey$means,variation="SD",horiz=FALSE,ylim=c(0,30),bar=FALSE,col="gray",space=0.5, main="Desviación Estandar",ylab="Área de Copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="SE",horiz=FALSE,ylim=c(0,20),bar=FALSE,col="green",space=1,main="Error",ylab="Área de Copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.err(tukey$means,variation="range",ylim=c(0,55),bar=FALSE,col="blue", space=1,main="Rangos de valores = Max - Min",ylab="Área de Copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)
bar.group(tukey$groups,horiz=FALSE,ylim=c(0,20),density=20,col="black",main="Grupos",ylab="Área de Copa (m2)",las=2,cex.axis=2,cex.lab=1.5,cex.main=2,cex=1.5,font.main=2,font.axis=2)

boxplot(POH$AC14 ~ POH$Localidad, xlab = "Localidad", ylab = "Área de Copa (m2)")
plot(modelo)
## Warning: not plotting observations with leverage one:
##   23, 36, 67, 68, 78, 87, 88, 126, 131, 141, 142, 181, 226, 235, 298, 361, 660, 663
## Warning: not plotting observations with leverage one:
##   23, 36, 67, 68, 78, 87, 88, 126, 131, 141, 142, 181, 226, 235, 298, 361, 660, 663

CORRELACI?N

library(agricolae)
OMZ1<-read.csv("C:/TESIS/ANOVA/CORR-GRE.csv", header=T)
correlation(OMZ1[c(2,3,4,5,6,7,20,21,22,23,24)],method="pearson")
## 
## Correlation Analysis
## 
## Method     : pearson
## Alternative: two.sided
## $correlation
##       LAT.N LON.O   ALT  TEMP  PPTN    PH   H.A  DN.A  DB.A  DC.A  AC.A
## LAT.N     1     1  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00
## LON.O     1     1  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00
## ALT       0     0  1.00 -0.70 -0.83  0.80 -0.60 -0.61 -0.59 -0.63 -0.60
## TEMP      0     0 -0.70  1.00  0.61 -0.68  0.48  0.42  0.40  0.39  0.38
## PPTN      0     0 -0.83  0.61  1.00 -0.78  0.38  0.38  0.33  0.41  0.38
## PH        0     0  0.80 -0.68 -0.78  1.00 -0.65 -0.57 -0.55 -0.56 -0.55
## H.A       0     0 -0.60  0.48  0.38 -0.65  1.00  0.95  0.94  0.95  0.94
## DN.A      0     0 -0.61  0.42  0.38 -0.57  0.95  1.00  0.98  0.97  0.98
## DB.A      0     0 -0.59  0.40  0.33 -0.55  0.94  0.98  1.00  0.98  0.97
## DC.A      0     0 -0.63  0.39  0.41 -0.56  0.95  0.97  0.98  1.00  0.99
## AC.A      0     0 -0.60  0.38  0.38 -0.55  0.94  0.98  0.97  0.99  1.00
## 
## $pvalue
##           LAT.N     LON.O          ALT       TEMP         PPTN          PH
## LAT.N 1.0000000 0.0000000 0.9999998682 1.00000000 0.9999999638 1.000000000
## LON.O 0.0000000 1.0000000 0.9999998682 1.00000000 0.9999999638 1.000000000
## ALT   0.9999999 0.9999999 1.0000000000 0.01085806 0.0008828833 0.001736561
## TEMP  1.0000000 1.0000000 0.0108580580 1.00000000 0.0335333292 0.014018926
## PPTN  1.0000000 1.0000000 0.0008828833 0.03353333 1.0000000000 0.002772568
## PH    1.0000000 1.0000000 0.0017365608 0.01401893 0.0027725679 1.000000000
## H.A   1.0000000 1.0000000 0.0373651687 0.11665576 0.2260560022 0.022667033
## DN.A  0.9999998 0.9999998 0.0336057914 0.17533431 0.2232090251 0.052322586
## DB.A  1.0000000 1.0000000 0.0443794373 0.20163832 0.2882728843 0.062449255
## DC.A  0.9999997 0.9999997 0.0268978663 0.20599364 0.1890453850 0.057855141
## AC.A  0.9999999 0.9999999 0.0375166059 0.22099953 0.2229095298 0.065327693
##                H.A         DN.A         DB.A         DC.A         AC.A
## LAT.N 1.000000e+00 9.999998e-01 1.000000e+00 9.999997e-01 9.999999e-01
## LON.O 1.000000e+00 9.999998e-01 1.000000e+00 9.999997e-01 9.999999e-01
## ALT   3.736517e-02 3.360579e-02 4.437944e-02 2.689787e-02 3.751661e-02
## TEMP  1.166558e-01 1.753343e-01 2.016383e-01 2.059936e-01 2.209995e-01
## PPTN  2.260560e-01 2.232090e-01 2.882729e-01 1.890454e-01 2.229095e-01
## PH    2.266703e-02 5.232259e-02 6.244925e-02 5.785514e-02 6.532769e-02
## H.A   1.000000e+00 6.660529e-07 1.860493e-06 7.859853e-07 1.275145e-06
## DN.A  6.660529e-07 1.000000e+00 2.903317e-09 5.605179e-08 2.648523e-09
## DB.A  1.860493e-06 2.903317e-09 1.000000e+00 7.761038e-09 1.788938e-08
## DC.A  7.859853e-07 5.605179e-08 7.761038e-09 1.000000e+00 5.443319e-10
## AC.A  1.275145e-06 2.648523e-09 1.788938e-08 5.443319e-10 1.000000e+00
## 
## $n.obs
##       LAT.N LON.O ALT TEMP PPTN PH H.A DN.A DB.A DC.A AC.A
## LAT.N    12    12  12   12   12 12  12   12   12   12   12
## LON.O    12    12  12   12   12 12  12   12   12   12   12
## ALT      12    12  12   12   12 12  12   12   12   12   12
## TEMP     12    12  12   12   12 12  12   12   12   12   12
## PPTN     12    12  12   12   12 12  12   12   12   12   12
## PH       12    12  12   12   12 12  12   12   12   12   12
## H.A      12    12  12   12   12 12  13   13   13   13   13
## DN.A     12    12  12   12   12 12  13   13   13   13   13
## DB.A     12    12  12   12   12 12  13   13   13   13   13
## DC.A     12    12  12   12   12 12  13   13   13   13   13
## AC.A     12    12  12   12   12 12  13   13   13   13   13
library(psych)
## Warning: package 'psych' was built under R version 3.1.3
pairs.panels(OMZ1[c(2,3,4,5,6,7,8,9,10,11,12)],cex=6,font=2,pch=19,font.labels =2)#CORRELACIÓN DE VARIABLES EN MZ
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero

pairs.panels(OMZ1[c(2,3,4,5,6,7,14,15,16,17,18)],cex=6,font=2,pch=19,font.labels = 2)#CORRELACIÓN DE VARIABLES EN TP
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero

pairs.panels(OMZ1[c(2,3,4,5,6,7,20,21,22,23,24)],cex=6,font=2,pch=19,font.labels = 2)#CORRELACIÓN DE VARIABLES EN TP
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero
## Warning in cor(x, y, use = "pairwise", method = method): the standard
## deviation is zero

GRAFICAS DE DISTRIBUCION DE PROCEDENCIAS DE ACUERDO AL CRECIMIENTO

OMZ1<-read.csv("C:/LUGO/GREMZ.csv", header=T)# FACTORES 
OTP2<-read.csv("C:/LUGO/GRETP.csv", header=T)# FACTORES 

par(mfrow=c(1,2),cex=0.6)
boxplot(H14~procedencia, data=OMZ1)
boxplot(H14~procedencia, data=OTP2)

H14<-OMZ1[c(3,16)]#Seleccion de columnas de interes
plot.design(H14,fun ="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab="Altura (m)", main="Magdalena Zahuatlán",cex.main=3,ylim=c(5,13))
H14<-OTP2[c(3,13)]#Seleccion de columnas de interes
plot.design(H14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab=" ",main="Tlacotepec Plumas",cex.main=3,ylim=c(5,13))

DB14<-OMZ1[c(3,17)]#Seleccion de columnas de interes
plot.design(DB14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab="Diámetro Basal (cm)", main="Magdalena Zahuatlán",cex.main=3,ylim=c(11,23))
DB14<-OTP2[c(3,14)]#Seleccion de columnas de interes
plot.design(DB14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab=" ", main="Tlacotepec Plumas",cex.main=3,ylim=c(11,23))

DAP14<-OMZ1[c(3,18)]#Seleccion de columnas de interes
plot.design(DAP14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab="Diámetro Normal (cm)", main="Magdalena Zahuatlán",cex.main=3,ylim=c(8,18))
DAP14<-OTP2[c(3,15)]#Seleccion de columnas de interes
plot.design(DAP14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab="", main="Tlacotepec Plumas",cex.main=3,ylim=c(8,18))

DC14<-OMZ1[c(3,19)]#Seleccion de columnas de interes
plot.design(DC14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab="Diámetro de Copa (m)", main="Magdalena Zahuatlán",cex.main=3,ylim=c(2.5,5))
DC14<-OTP2[c(3,16)]#Seleccion de columnas de interes
plot.design(DC14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab=" " , main="Tlacotepec Plumas",cex.main=3,ylim=c(2.5,5))

AC14<-OMZ1[c(3,20)]#Seleccion de columnas de interes
plot.design(AC14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab="Área de Copa (m2/arb)", main="Magdalena Zahuatlán",cex.main=3,ylim=c(7,20))
AC14<-OTP2[c(3,17)]#Seleccion de columnas de interes
plot.design(AC14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab=" ", main="Tlacotepec Plumas",cex.main=3,ylim=c(7,20))

OTO1<-read.csv("C:/LUGO/gregtod.csv", header=T)# FACTORES 
boxplot(H14~procedencia, data=OTO1)

par(mfrow=c(1,2),cex=0.6)

H<-OTO1[c(3,17)]#Seleccion de columnas de interes
plot.design(H, fun = "mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab="m", main="Altura",cex.main=3,ylim=c(6.5,11.5))
DB14<-OTO1[c(3,18)]#Seleccion de columnas de interes
plot.design(DB14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab=" cm", main="Diámetro Basal",cex.main=3,ylim=c(12,21))

par(mfrow=c(1,3),cex=0.6)
DAP14<-OTO1[c(3,19)]#Seleccion de columnas de interes
plot.design(DAP14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab="cm", main="Diámetro Normal",cex.main=3,ylim=c(9.5,16.5))
DC14<-OTO1[c(3,20)]#Seleccion de columnas de interes
plot.design(DC14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab="m", main="Diámetro de Copa",cex.main=3,ylim=c(3.2,4.7))
AC14<-OTO1[c(3,21)]#Seleccion de columnas de interes
plot.design(AC14,fun="mean",las=1,cex.axis=2.5,cex.lab=2.5,cex=2.5,font.main=2,ylab="m2/arb", main="Área de Copa",cex.main=3,ylim=c(8,19))

graficos de crecimiento por mediciones

OMZ1<-read.csv("C:/LUGO/GREMZ.csv", header=T)# FACTORES 
par(mfrow=c(2,5),cex=0.6)
H<-OMZ1[c(3,4,6,8,11,16)]#Seleccion de columnas de interes
plot.design(H, fun = "mean")
DB<-OMZ1[c(3,5,7,9,12,17)]#Seleccion de columnas de interes
plot.design(DB, fun = "mean")

par(mfrow=c(2,3),cex=0.6)
DAP<-OMZ1[c(3,10,13,18)]#Seleccion de columnas de interes
plot.design(DAP, fun = "mean")
## Warning: some levels of the factors are empty
DC<-OMZ1[c(3,14,19)]#Seleccion de columnas de interes
plot.design(DC, fun = "mean")
AC<-OMZ1[c(3,15,20)]#Seleccion de columnas de interes
plot.design(AC, fun = "mean")

#Falta lo de Tlacotepec Plumas y DE AMBAS
OMZ1<-read.csv("C:/LUGO/gregtod.csv", header=TRUE)# FACTORES 
H<- as.numeric(OMZ1$H97)
par(mfrow=c(2,5),cex=0.6)
str(OMZ1)
## 'data.frame':    936 obs. of  23 variables:
##  $ Localidad  : Factor w/ 2 levels "Magdalena Zahuatlan",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ bloque     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ procedencia: Factor w/ 13 levels "CDZH","EMQ","EPH",..: 4 4 4 8 8 8 7 7 7 12 ...
##  $ planta     : int  4 5 6 4 5 6 4 5 6 4 ...
##  $ H97        : Factor w/ 97 levels "",".","0.06",..: 26 32 13 59 39 58 28 27 16 43 ...
##  $ DB97       : num  2 1.9 1.35 2.2 3.2 3.15 2 1.9 1.95 NA ...
##  $ H99        : num  0.71 0.95 0.59 1.07 1.13 1.45 0.95 0.96 0.69 NA ...
##  $ DB99       : num  1.97 3.33 1.65 2.91 3.61 4 2.42 2.53 2.89 NA ...
##  $ H04        : num  3.2 2.6 3.6 2.4 4.8 6.1 5.5 2.6 3.2 NA ...
##  $ DB04       : num  10.5 7.64 9.55 6.68 14.01 ...
##  $ DAP04      : num  4.3 4.46 5.41 3.18 4.3 ...
##  $ H12        : num  5 6.86 6 9.48 11.4 11 7.4 6.8 7.5 NA ...
##  $ DB12       : num  13.4 17.2 11.5 18.1 27.7 21 15.9 12.4 16.2 NA ...
##  $ DAP12      : num  9.9 14.7 9.2 15.9 22 20.4 15.6 9.5 12.4 NA ...
##  $ DC12       : num  2.8 5.5 2.95 4.2 4.5 4.85 3.85 4.1 4.55 NA ...
##  $ AC12       : num  6.16 23.76 6.83 13.85 15.9 ...
##  $ H14        : num  5.5 8.5 7 11 11.5 12 8 8.5 9 NA ...
##  $ DB14       : num  14 19.4 13.1 22 28.6 ...
##  $ DAP14      : num  11.1 16.2 10.2 16.9 22.6 ...
##  $ DC14       : num  3.35 5.3 3.4 5.45 4.85 ...
##  $ AC14       : num  8.81 22.06 9.08 23.33 18.47 ...
##  $ X          : Factor w/ 18 levels "","CDZH","EMQ",..: 1 17 12 14 13 8 6 5 16 3 ...
##  $ X.1        : Factor w/ 15 levels "","COMUNUDAD DURANGO ZIMAPµN, HIDALGO",..: 10 1 11 13 12 8 6 5 1 3 ...
H<-OMZ1[c(3,5,7,9,12,17)]#Seleccion de columnas de interes
plot.design(H, fun = "mean")
## Warning: some levels of the factors are empty
## Warning: some levels of the factors are empty
## Warning: some levels of the factors are empty
## Warning: some levels of the factors are empty
DB<-OMZ1[c(3,6,8,10,13,18)]#Seleccion de columnas de interes
plot.design(DB, fun = "mean")

par(mfrow=c(1,3),cex=0.6)

DAP<-OMZ1[c(3,11,14,19)]#Seleccion de columnas de interes
plot.design(DAP, fun = "mean")

par(mfrow=c(2,2),cex=0.6)
DC<-OMZ1[c(3,15,20)]#Seleccion de columnas de interes
plot.design(DC, fun = "mean")
AC<-OMZ1[c(3,16,21)]#Seleccion de columnas de interes
plot.design(AC, fun = "mean")

SUPERVIVENCIA-COMPARACION DE MUESTRAS INDEPENDEINTES

SUP<-read.csv("C:/TESIS/ANOVA/SUPER.csv", header=T)
head(SUP)
##   LOC.O PROC.O SUP.O  X LOC.G PROC.G SUP.G X.1 AM  TPO X71.19 AM.1 PLCC
## 1    MZ    TPO 90.00 NA    MZ   PLCC 61.89  NA AM SMPO  71.19   AM  SAC
## 2    MZ   SMPO 78.17 NA    MZ    SAC 61.89  NA AM SMAO  69.30   AM PSLC
## 3    MZ   SMAO 65.88 NA    MZ   PSLC 61.89  NA AM  MZO  67.54   AM  LLC
## 4    MZ    MZO 69.30 NA    MZ    LLC 58.18  NA AM  CMO  69.30   AM   JC
## 5    MZ    CMO 78.17 NA    MZ     JC 68.11  NA AM  IJO  65.88   AM  GNL
## 6    MZ    IJO 69.30 NA    MZ    GNL 65.88  NA AM   XO  69.30   AM  EMQ
##   X68.11
## 1  66.97
## 2  70.54
## 3  65.80
## 4  71.85
## 5  69.30
## 6  71.85
boxplot(SUP$SUP.G ~ SUP$LOC.G, xlab = "Contenedores", ylab = "crecimiento (cm)")

t.test(SUP$SUP.G ~ SUP$LOC.G, var.equal=T)#PRUEBA T PARA LAS LOCALIDADES
## 
##  Two Sample t-test
## 
## data:  SUP$SUP.G by SUP$LOC.G
## t = -5.7096, df = 24, p-value = 6.987e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -17.863624  -8.377914
## sample estimates:
## mean in group MZ mean in group TP 
##         65.21615         78.33692
boxplot(SUP$SUP.G ~ SUP$PROC.G, xlab = "Contenedores", ylab = "crecimiento (cm)")

tapply(SUP$SUP.G, SUP$PROC.G,mean)#PROMEDIO DE LAS PROCEDENCIAS
##   CDZH    EMQ    EPH    GNL     JC    LAH    LLC     MH   PLCC   PSLC 
## 81.030 72.210 73.425 69.570 72.210 70.185 67.245 69.100 69.100 75.945 
##    SAC    TLQ     XH 
## 67.575 76.935 68.565
PROCEDENCIAS VALORES ARC VALORES %
DCZH 81.030 97.71
EMQ 72.210 90.66
EPH 73.425 91.84
GNL 69.570 87.74
JC 72.210 90.66
LAH 70.185 88.41
LLC 67.245 84.98
MH 69.100 87.27
PLCC 69.100 87.27
PSJC 75.945 94.07
SAC 67.575 85.36
TLQ 76.935 94.83
XH 68.565 86.57