library(tidyverse)
library(geomtextpath)
In this homework assignment, you will work through various classification metrics. You will be asked to create functions in R to carry out the various calculations. You will also investigate some functions in packages that will let you obtain the equivalent results. Finally, you will create graphical output that also can be used to evaluate the output of classification models, such as binary logistic regression.
Applied Predictive Modeling, Ch. 11 (provided as a PDF file).
Web tutorials: http://www.saedsayad.com/model_evaluation_c.htm
Complete each of the following steps as instructed:
class_df <- as.data.frame(read.csv('https://raw.githubusercontent.com/andrewbowen19/businessAnalyticsDataMiningDATA621/main/data/hw2_input_classification-output-data.csv'))
head(class_df)
## pregnant glucose diastolic skinfold insulin bmi pedigree age class
## 1 7 124 70 33 215 25.5 0.161 37 0
## 2 2 122 76 27 200 35.9 0.483 26 0
## 3 3 107 62 13 48 22.9 0.678 23 1
## 4 1 91 64 24 0 29.2 0.192 21 0
## 5 4 83 86 19 0 29.3 0.317 34 0
## 6 1 100 74 12 46 19.5 0.149 28 0
## scored.class scored.probability
## 1 0 0.32845226
## 2 0 0.27319044
## 3 0 0.10966039
## 4 0 0.05599835
## 5 0 0.10049072
## 6 0 0.05515460
The dataset provided includes several attributes to predict whether or not a patient has diabetes.
The data set has three key columns we will use:
class: the actual class for the observation
scored.class: the predicted class for the observation (based on a threshold of \(0.5\))
scored.probability: the predicted probability of success for the observation
Use the table() function to get the raw confusion matrix for this scored dataset. Make sure you understand the output. In particular, do the rows represent the actual or predicted class? The columns?
class_df <- class_df |>
mutate(class = factor(class, levels=c(1,0)),
scored.class = factor(scored.class, levels=c(1,0)))
keep <- c("scored.class", "class")
class_subset <- class_df |>
select(all_of(keep))
confusion_matrix <- table(class_subset)
confusion_matrix
## class
## scored.class 1 0
## 1 27 5
## 0 30 119
The row labels in the confusion matrix represent the predicted class, while the column labels represent the actual class. The values in the confusion matrix correspond to the number of observations correctly/incorrectly predicted for this dataframe. There were 27 instances where a patient was accurately diagnosed with diabetes (true positive) and 119 instances where a patient without diabetes was classified as not having diabetes (true negative). There were 30 instances where a patient with diabetes was incorrectly classified as not having diabetes (false negative) and 5 instances of a patient being incorrectly diagnosed with diabetes (false positive).
\[Accuracy = \frac{TP + TN}{TP + FP + TN + FN}\]
accuracy.func <- function(input_df) {
accuracy <- input_df |> dplyr::mutate(correct=ifelse(class==scored.class,1,0)) |> summarise(total_correct = sum(correct),accuracy=total_correct/n()) |> select(c(accuracy))
}
acc_val <- accuracy.func(class_subset)
print(round(acc_val, 2))
## accuracy
## 1 0.81
\[Classification\text{ }Error\text{ }Rate = \frac{FP + FN}{TP + FP + TN + FN}\]
error.func <- function(input_df) {
accuracy <- input_df |> dplyr::mutate(incorrect=ifelse(class==scored.class,0,1)) |> summarise(total_incorrect = sum(incorrect),error_rate=total_incorrect/n()) |> select(c(error_rate))
}
error_val <- error.func(class_subset)
print(round(error_val, 2))
## error_rate
## 1 0.19
Verify that you get an accuracy and an error rate that sums to one.
(as.numeric(acc_val) + as.numeric(error_val))
## [1] 1
Confirmed. The accuracy and error rate values do add up to one.
\[Precision = \frac{TP}{TP + FP}\]
precision.func <- function(input_df) {
precision <- input_df |> dplyr::filter(scored.class==1) |> mutate(prec=ifelse(class==scored.class,1,0)) |>
summarise(total_prec = sum(prec),precision_rate=total_prec/n()) |> select(c(precision_rate))
}
prec_val <- precision.func(class_subset)
print(round(prec_val, 2))
## precision_rate
## 1 0.84
\[Sensitivity = \frac{TP}{TP + FN}\]
sensitivity.func <- function(input_df) {
sensitivity <- input_df |> dplyr::filter(class==1) |> mutate(sens=ifelse(class==scored.class,1,0)) |>
summarise(total_sens = sum(sens),sensitivity_rate=total_sens/n()) |> select(c(sensitivity_rate))
}
sens_val <- sensitivity.func(class_subset)
print(round(sens_val, 2))
## sensitivity_rate
## 1 0.47
\[Specificity = \frac{TN}{TN + FP}\]
specificity.func <- function(input_df) {
specificity <- input_df |> dplyr::filter(class==0) |> mutate(spec=ifelse(class==scored.class,1,0)) |>
summarise(total_spec = sum(spec),specificity_rate=total_spec/n()) |> select(c(specificity_rate))
}
spec_val <- specificity.func(class_subset)
print(round(spec_val, 2))
## specificity_rate
## 1 0.96
\[F1\text{ }Score = \frac{2 \times Precision \times Sensitivity}{Precision + Sensitivity}\]
f1.score <- function(input_df) {
f1<-(2*precision.func(input_df)*sensitivity.func(input_df))/(precision.func(input_df)+sensitivity.func(input_df))
}
f1_val <- f1.score(class_subset)
colnames(f1_val) <- "f1_score"
print(round(f1_val, 2))
## f1_score
## 1 0.61
Result of the F1 function given that the maximum value for precision and sensitivity is 1 if every single value were correctly predicted:
\[\frac{2 * 1 * 1}{1+1} = \frac{2}{2} = 1\]
Alternatively, the worst case scenario for the metrics from a classification model would if every single prediction was incorrect:
\[\frac{2 * 0 * 0}{0+0} = \frac{0}{0}\]
Let’s show graphically that even if one of the scores was perfect/imperfect the maximum value as assumed before would be 1.
x <- seq(0, 1, by=0.01)
# Calculate the function values
y <- (2* x * 1)/(x+1)
# Create a data frame with x and y values
df <- data.frame(x = x, y = y)
ggplot(data = df, aes(x = x, y = y)) +
geom_point() +
labs(x = "x", y = "f(x)",title = "F1 Score between 0 and 1") +
theme_light()
keep <- c("class", "scored.probability")
class_subset <- class_df |>
select(all_of(keep))
roc.func <- function(input_df){
plot_points_df <- as.data.frame(matrix(ncol = 3, nrow = 0))
cols <- c("threshold", "fpr", "tpr")
colnames(plot_points_df) <- cols
thresholds <- seq(from = 0, to = 1, by = 0.01)
copy <- input_df
for (i in 1:length(thresholds)){
threshold <- thresholds[i]
copy <- copy |>
mutate(scored.class = ifelse(scored.probability > threshold, 1, 0))
fpr <- 1 - as.numeric(specificity.func(copy))
tpr <- as.numeric(sensitivity.func(copy))
new_row <- as.data.frame(t(c(threshold, fpr, tpr)))
colnames(new_row) <- cols
plot_points_df <- rbind(plot_points_df, new_row)
}
roc_plot <- ggplot(plot_points_df, aes(x = fpr, y = tpr)) +
geom_point() +
geom_line() +
geom_labelabline(intercept = 0, slope = 1, label = "Random Classifier",
linetype = "dashed", color = "red") +
labs(x = "False Positive Rate (1 - Specifity)",
y = "True Positive Rate (Sensitivity)",
title = "ROC Curve") +
theme_light()
auc <- 0
plot_points_df <- plot_points_df |>
arrange(fpr)
for (k in 2:nrow(plot_points_df)){
x2 <- plot_points_df[k, 2]
x1 <- plot_points_df[k - 1, 2]
y2 <- plot_points_df[k, 3]
y1 <- plot_points_df[k - 1, 3]
trap_area <- (x2 - x1) * ((y2 + y1)/2)
auc <- auc + trap_area
}
roc_plot_and_auc <- list(ROC_Plot = roc_plot, AUC = round(auc, 2))
return(roc_plot_and_auc)
}
roc_plot_and_auc <- roc.func(class_subset)
roc_plot_and_auc
## $ROC_Plot
##
## $AUC
## [1] 0.85
metrics_table <- cbind(acc_val, error_val, prec_val, sens_val, spec_val, f1_val) |>
pivot_longer(accuracy:f1_score,
names_to="metric",
values_to="value")
knitr::kable(metrics_table)
| metric | value |
|---|---|
| accuracy | 0.8066298 |
| error_rate | 0.1933702 |
| precision_rate | 0.8437500 |
| sensitivity_rate | 0.4736842 |
| specificity_rate | 0.9596774 |
| f1_score | 0.6067416 |
# load package
library(caret)
# confusionMatrix
(conf_matrix <- confusionMatrix(class_df$scored.class,
reference = class_df$class,
positive = '1'))
## Confusion Matrix and Statistics
##
## Reference
## Prediction 1 0
## 1 27 5
## 0 30 119
##
## Accuracy : 0.8066
## 95% CI : (0.7415, 0.8615)
## No Information Rate : 0.6851
## P-Value [Acc > NIR] : 0.0001712
##
## Kappa : 0.4916
##
## Mcnemar's Test P-Value : 4.976e-05
##
## Sensitivity : 0.4737
## Specificity : 0.9597
## Pos Pred Value : 0.8438
## Neg Pred Value : 0.7987
## Prevalence : 0.3149
## Detection Rate : 0.1492
## Detection Prevalence : 0.1768
## Balanced Accuracy : 0.7167
##
## 'Positive' Class : 1
##
# sensitivity
caret_sens <- sensitivity(conf_matrix$table)
# specificity
caret_spec <- specificity(conf_matrix$table)
# compare functions
caret_calcs <- as.data.frame(cbind(caret_sens, caret_spec))
colnames(caret_calcs) <- c("sensitivity_rate", "specificity_rate")
caret_calcs |>
pivot_longer(cols=c("sensitivity_rate", "specificity_rate"),
names_to = "metric",
values_to = "caret value") |>
left_join(metrics_table, by="metric") |>
knitr::kable(col.names = c("Metric", "Caret Values", "Function Values"))
| Metric | Caret Values | Function Values |
|---|---|---|
| sensitivity_rate | 0.4736842 | 0.4736842 |
| specificity_rate | 0.9596774 | 0.9596774 |
The values from our functions and the values from the sensitivity and specificity functions are the same.
Let’s check the rest of our functions against the values from the confusionMatrix function. Sensitivity and specificity can also be taken from here.
caret_acc <- conf_matrix$overall[1]
caret_err <- 1-caret_acc
caret_prec <- conf_matrix$byClass[5]
caret_sens <- conf_matrix$byClass[1]
caret_spec <- conf_matrix$byClass[2]
caret_f1 <- conf_matrix$byClass[7]
caret_results <- as.data.frame(cbind(caret_acc, caret_err, caret_prec, caret_sens, caret_spec, caret_f1))
colnames(caret_results) <- metrics_table$metric
caret_results |>
pivot_longer(accuracy:f1_score,
names_to="metric",
values_to="caret_vals") |>
right_join(metrics_table) |>
knitr::kable(col.names = c("Metric", "Function Values", "Caret Values"))
## Joining with `by = join_by(metric)`
| Metric | Function Values | Caret Values |
|---|---|---|
| accuracy | 0.8066298 | 0.8066298 |
| error_rate | 0.1933702 | 0.1933702 |
| precision_rate | 0.8437500 | 0.8437500 |
| sensitivity_rate | 0.4736842 | 0.4736842 |
| specificity_rate | 0.9596774 | 0.9596774 |
| f1_score | 0.6067416 | 0.6067416 |
The values for each of our functions are the same as the values for the built in functions from the caret package.
library(pROC)
roc_from_pROC <- roc(class_df$class,
class_df$scored.probability,
plot=T)
Examining the list of information produced by the roc() function from the pROC package, including the plot, we can see this function uses more thresholds than our function, and these thresholds aren’t evenly spaced. As the thresholds get smaller, the differences between one threshold and the next get smaller as well. The curve from this function appears to step as a result, and it has no apparent jagged dips like ours. The AUC returned is the same though, and the main difference is in the plot itself. \(Specificity\) is plotted on the x-axis instead of \(1 - Specificity\), so the curve runs from \(1\) to \(0\) on the x-axis instead of from \(0\) to \(1\).