I decided to scrape https://www.imdb.com(IMDb website) and chosen the following variables: (1) movie name, (2) year, (3) director, (4) user rating and (5) number of votes in rating the movie.
Such a dataset can be used for analyzing a particular movie genre or another group of movies to identify preferences of viewers, e.g. what movies are watched more often (number of votes), which are more liked (ratings), whether it depends on the director, etc. Of course, more variables would need to be included for a deeper analysis, especially if such a dataset would be further used for building of recommendation systems (e.g. age restrictions, duration, genres can be added).
This page shows Russian movies released in last 5 years and sorted by user ratings from highest to lowest.
url = "https://www.imdb.com/search/title/?title_type=feature&release_date=2018-01-01,2022-12-31&countries=ru&sort=user_rating,desc"
page = read_html(url)
start=1 on the first page, while on the second
it’s start=51). Thus, we need to specify in the loop from
which result the page starts to scrape several pages.dataloop = data.frame()
for (i in seq(from = 1, to = 50, by = 50)) {
link = paste0("https://www.imdb.com/search/title/?title_type=feature&release_date=2018-01-01,2022-12-31&countries=ru&sort=user_rating,desc&start=",
i, "&ref_=adv_nxt")
page = read_html(link)
movie_name = page%>%
html_nodes(".lister-item-header a") %>%
html_text()
year = page%>%
html_nodes(".text-muted.unbold") %>%
html_text()
user_rating = page%>%
html_nodes(".ratings-imdb-rating strong") %>%
html_text()
director = page%>%
html_nodes(".text-muted+ p a:nth-child(1)") %>%
html_text()
votes = page%>%
html_nodes(".sort-num_votes-visible span:nth-child(2)") %>%
html_text()
page_data1 <- data.frame(movie_name, year, user_rating, director, votes, stringsAsFactors = FALSE)
Sys.sleep(5)
}
for (i in seq(from = 51, to = 100, by = 50)) {
link = paste0("https://www.imdb.com/search/title/?title_type=feature&release_date=2018-01-01,2022-12-31&countries=ru&sort=user_rating,desc&start=",
i, "&ref_=adv_nxt")
page = read_html(link)
movie_name = page%>%
html_nodes(".lister-item-header a") %>%
html_text()
year = page%>%
html_nodes(".text-muted.unbold") %>%
html_text()
user_rating = page%>%
html_nodes(".ratings-imdb-rating strong") %>%
html_text()
director = page%>%
html_nodes(".text-muted+ p a:nth-child(1)") %>%
html_text()
votes = page%>%
html_nodes(".sort-num_votes-visible span:nth-child(2)") %>%
html_text()
page_data2 <- data.frame(movie_name, year, user_rating, director, votes, stringsAsFactors = FALSE)
Sys.sleep(5)
}
for (i in seq(from = 101, to = 150, by = 50)) {
link = paste0("https://www.imdb.com/search/title/?title_type=feature&release_date=2018-01-01,2022-12-31&countries=ru&sort=user_rating,desc&start=",
i, "&ref_=adv_nxt")
page = read_html(link)
movie_name = page%>%
html_nodes(".lister-item-header a") %>%
html_text()
year = page%>%
html_nodes(".text-muted.unbold") %>%
html_text()
user_rating = page%>%
html_nodes(".ratings-imdb-rating strong") %>%
html_text()
director = page%>%
html_nodes(".text-muted+ p a:nth-child(1)") %>%
html_text()
votes = page%>%
html_nodes(".sort-num_votes-visible span:nth-child(2)") %>%
html_text()
page_data3 <- data.frame(movie_name, year, user_rating, director, votes, stringsAsFactors = FALSE)
Sys.sleep(5)
}
for (i in seq(from = 151, to = 200, by = 50)) {
link = paste0("https://www.imdb.com/search/title/?title_type=feature&release_date=2018-01-01,2022-12-31&countries=ru&sort=user_rating,desc&start=",
i, "&ref_=adv_nxt")
page = read_html(link)
movie_name = page%>%
html_nodes(".lister-item-header a") %>%
html_text()
year = page%>%
html_nodes(".text-muted.unbold") %>%
html_text()
user_rating = page%>%
html_nodes(".ratings-imdb-rating strong") %>%
html_text()
director = page%>%
html_nodes(".text-muted+ p a:nth-child(1)") %>%
html_text()
votes = page%>%
html_nodes(".sort-num_votes-visible span:nth-child(2)") %>%
html_text()
page_data4 <- data.frame(movie_name, year, user_rating, director, votes, stringsAsFactors = FALSE)
Sys.sleep(5)
}
for (i in seq(from = 201, to = 250, by = 50)) {
link = paste0("https://www.imdb.com/search/title/?title_type=feature&release_date=2018-01-01,2022-12-31&countries=ru&sort=user_rating,desc&start=",
i, "&ref_=adv_nxt")
page = read_html(link)
movie_name = page%>%
html_nodes(".lister-item-header a") %>%
html_text()
year = page%>%
html_nodes(".text-muted.unbold") %>%
html_text()
user_rating = page%>%
html_nodes(".ratings-imdb-rating strong") %>%
html_text()
director = page%>%
html_nodes(".text-muted+ p a:nth-child(1)") %>%
html_text()
votes = page%>%
html_nodes(".sort-num_votes-visible span:nth-child(2)") %>%
html_text()
page_data5 <- data.frame(movie_name, year, user_rating, director, votes, stringsAsFactors = FALSE)
Sys.sleep(5)
}
ru_movies_imdb = bind_rows(dataloop, page_data1, page_data2, page_data3, page_data4, page_data5)
print(paste("Page:", i))
## [1] "Page: 201"
Finally, we create a csv file for the dataset
write.csv(ru_movies_imdb, "ru_movies.csv")
movies <- read.csv("ru_movies.csv")
kable(movies, align = "lcclc", caption = "Table 1. Sample of Russian movies on IMDb 2018-2022")%>%
kable_styling()
| X | movie_name | year | user_rating | director | votes |
|---|---|---|---|---|---|
| 1 | Who is Prince Oak Oakleyski |
|
9.6 | I. Kolyada | 55 |
| 2 | Real Emperor Kandanai Maneesawath |
|
9.4 | I. Kolyada | 61 |
| 3 | Prince of Eurasia |
|
9.4 | I. Kolyada | 61 |
| 4 | Prince Oakleyski Eurasia - Royalwiki |
|
9.2 | Prince Oak Oakleyski | 60 |
| 5 | Зимы не будет |
|
9.1 | Dmitri Frolov | 38 |
| 6 | Gjirokastra |
|
9.0 | Yuriy Arabov | 7 |
| 7 | Призраки Московского метро |
|
9.0 | Sergey A. | 28 |
| 8 | Ужас Битцевского парка |
|
9.0 | Sergey A. | 38 |
| 9 | Vordum: Price of Death |
|
8.9 | Ivan Akhmetov | 22 |
| 10 | Молитва Ангела |
|
8.9 | Maria Solovyova | 13 |
| 11 | Monte Cristo Musical |
|
8.8 | Dongwon Lee | 20 |
| 12 | Орбиус |
|
8.8 | Sergey A. | 427 |
| 13 | Боевик на НТВ: Окончательное издание |
|
8.8 | Ilya Novikov | 10 |
| 14 | Большие змеи Улли-Кале |
|
8.8 | Aleksey Fedorchenko | 7 |
| 15 | Vordum: Price of Death |
|
8.6 | Ivan Akhmetov | 34 |
| 16 | Chaos from the Old World. Part II |
|
8.6 | Paul Miloslavsky | 10 |
| 17 | Навстречу мечте |
|
8.5 | Irina Gobozashvili | 20 |
| 18 | Лесной монстр |
|
8.4 | Sergey A. | 470 |
| 19 | Тупик. Дорога. |
|
8.4 | Anatoly K. Ivanov | 48 |
| 20 | Мортис |
|
8.4 | Sergey A. | 27 |
| 21 | Balaban |
|
8.3 | Aysulu Onaran | 13 |
| 22 | План 9 с Алиэкспресса |
|
8.3 | Diana Galimzyanova | 8 |
| 23 | КАРАнтин |
|
8.3 | Diana Ringo | 12 |
| 24 | В ожидании смерти |
|
8.3 | Sergey A. | 1,160 |
| 25 | Манюня в кино |
|
8.3 | Arman Marutyan | 100 |
| 26 | Все люди исчезли навсегда |
|
8.3 | Sergey A. | 453 |
| 27 | Who Wants to Live Forever? |
|
8.3 | Nicole Andreas | 17 |
| 28 | Проклятый лес |
|
8.3 | Sergey A. | 446 |
| 29 | Коронавирус. Апокалипсис |
|
8.3 | Sergey A. | 157 |
| 30 | Капитан Голливуд |
|
8.3 | Evgeniy Tatarov | 7 |
| 31 | Сиреноголовый |
|
8.2 | Sergey A. | 1,320 |
| 32 | Хаос |
|
8.2 | Sergey A. | 146 |
| 33 | Убийства в лесу мёртвых акул |
|
8.1 | Sergey A. | 546 |
| 34 | Full film deepfake. By Vnuk Elkina: Don’t threat to younger debil, sitting in the sorrow of the chernobyl. |
|
8.1 | Alexandr Prokhorov | 12 |
| 35 | Это Эдик. Сказка о подаренном и украденном детстве |
|
8.0 | Ivan Proskuryakov | 30 |
| 36 | Opasnaya Zhizn |
|
8.0 | Ivan | 6 |
| 37 | После |
|
7.9 | Sergey A. | 435 |
| 38 | Эластико: Двенадцатый игрок |
|
7.9 | Dmitriy Vlaskin | 102 |
| 39 | Смотреть кино онлайн бесплатно |
|
7.8 | Sergey A. | 157 |
| 40 | Майор Дрон и Чумной Доктор |
|
7.8 | Sergey A. | 1,050 |
| 41 | Кадиш |
|
7.8 | Konstantin Fam | 30 |
| 42 | Ведьма 2 |
|
7.8 | Sergey A. | 434 |
| 43 | Major Dron and the plague doctor 2 |
|
7.8 | Sergey A. | 18 |
| 44 | Ведьма |
|
7.8 | Sergey A. | 439 |
| 45 | Reprint |
|
7.8 | Ivan Dulepov | 15 |
| 46 | Чернобыль |
|
7.7 | Sergey A. | 265 |
| 47 | AK 47 - 2020 |
|
7.7 | Konstantin Buslov | 11 |
| 48 | Поиск |
|
7.6 | Aneesh Chaganty | 176,160 |
| 49 | Вторжение |
|
7.6 | Sergey A. | 195 |
| 50 | Маленький воин |
|
7.6 | Ilya Ermolov | 90 |
| 51 | Всё хорошо |
|
7.6 | Elena Hazanova | 12 |
| 52 | Телевиzор |
|
7.6 | Sergey A. | 45 |
| 53 | Ресторан по понятиям. Фильм |
|
7.6 | David Dadunashvili | 98 |
| 54 | Антология ужасов 8 |
|
7.6 | Sergey A. | 45 |
| 55 | Нуучча |
|
7.5 | Vladimir Munkuev | 32 |
| 56 | Пальмира |
|
7.5 | Ivan Bolotnikov | 39 |
| 57 | Лорик |
|
7.5 | Aleksey Zlobin | 77 |
| 58 | Анна Каренина. Мюзикл |
|
7.5 | Yeji Shin | 32 |
| 59 | Уроки фарси |
|
7.4 | Vadim Perelman | 11,042 |
| 60 | Дорогие товарищи! |
|
7.4 | Andrey Konchalovskiy | 5,592 |
| 61 | Vertigo |
|
7.4 | Valery Konin | 7 |
| 62 | Два холма. Фильм |
|
7.4 | Dmitry Gribanov | 28 |
| 63 | Приснись Мне |
|
7.4 | Roman Olkhovka | 15 |
| 64 | Бетонная акула |
|
7.4 | Sergey A. | 1,101 |
| 65 | У самого Белого моря |
|
7.4 | Aleksandr Zachinyayev | 19 |
| 66 | Счастье - это… Часть 2 |
|
7.4 | Irina Basenko | 55 |
| 67 | Город-зад |
|
7.4 | Aleksandr Pozhenskiy | 29 |
| 68 | Лето |
|
7.3 | Kirill Serebrennikov | 7,724 |
| 69 | Капитан Волконогов бежал |
|
7.3 | Natasha Merkulova | 1,816 |
| 70 | Я иду играть |
|
7.3 | Anna Zaytseva | 34 |
| 71 | Джетлаг |
|
7.3 | Michael Idov | 246 |
| 72 | Модель |
|
7.3 | Olga Land | 83 |
| 73 | Лес мёртвых акул |
|
7.3 | Sergey A. | 558 |
| 74 | Can I Recognize Your Soul |
|
7.3 | Struggle da Preacher | 11 |
| 75 | Месть в лесу мёртвых акул |
|
7.3 | Sergey A. | 541 |
| 76 | Первый снег |
|
7.3 | Nataliya Konchalovskaya | 16 |
| 77 | Libertas |
|
7.3 | Artemio Benki | 10 |
| 78 | Парень из Голливуда, или Необыкновенные приключения Вени Везунчика |
|
7.3 | Roman Svetlov | 80 |
| 79 | Купе номер 6 |
|
7.2 | Juho Kuosmanen | 14,126 |
| 80 | Дылда |
|
7.2 | Kantemir Balagov | 11,976 |
| 81 | Доктор Лиза |
|
7.2 | Oksana Karas | 702 |
| 82 | Не хороните меня без Ивана |
|
7.2 | Lyubov Borisova | 89 |
| 83 | Надо мною солнце не садится |
|
7.2 | Lyubov Borisova | 160 |
| 84 | Серебряные коньки |
|
7.1 | Michael Lockshin | 7,041 |
| 85 | Айка |
|
7.1 | Sergei Dvortsevoy | 2,114 |
| 86 | Сестренка |
|
7.1 | Aleksandr Galibin | 453 |
| 87 | Император |
|
7.1 | Alfia Habibullina | 19 |
| 88 | Омут |
|
7.1 | Denis Kryuchkov | 65 |
| 89 | Царь-птица |
|
7.1 | Eduard Novikov | 47 |
| 90 | Лето |
|
7.1 | Vadim Kostrov | 23 |
| 91 | UFO |
|
7.1 | Gennadiy Vyrypaev | 18 |
| 92 | Африка |
|
7.1 | Darya Binevskaya | 23 |
| 93 | В винном отражении |
|
7.1 | Vitaliy Muzychenka | 39 |
| 94 | Зови меня Дрозд |
|
7.1 | Pavel Mirzoev | 13 |
| 95 | Сокровенный человек |
|
7.1 | Roman Liberov | 17 |
| 96 | Хрусталь |
|
7.0 | Darya Zhuk | 1,830 |
| 97 | Нос, или Заговор «не таких» |
|
7.0 | Andrey Khrzhanovskiy | 271 |
| 98 | Пальма |
|
6.9 | Aleksandr Domogarov | 994 |
| 99 | Знахарь |
|
6.9 | Yaroslav Mochalov | 30 |
| 100 | Дочь рыбака |
|
6.9 | Ismail Safarali | 24 |
| 101 | Совесть |
|
6.9 | Aleksey Kozlov | 35 |
| 102 | Нелегал |
|
6.9 | Dmitrii Davydov | 33 |
| 103 | Т-34 |
|
6.8 | Aleksey Sidorov | 13,716 |
| 104 | Папа, сдохни |
|
6.8 | Kirill Sokolov | 5,121 |
| 105 | Грех |
|
6.8 | Andrey Konchalovskiy | 1,290 |
| 106 | Брайтон 4 |
|
6.8 | Levan Koguashvili | 861 |
| 107 | Лёд |
|
6.8 | Oleg Trofim | 3,470 |
| 108 | Человек из Подольска |
|
6.8 | Semyon Serzin | 752 |
| 109 | Завод |
|
6.8 | Yuriy Bykov | 2,752 |
| 110 | Война Анны |
|
6.8 | Aleksey Fedorchenko | 605 |
| 111 | Земля Эльзы |
|
6.8 | Yuliya Kolesnik | 20 |
| 112 | Жанна |
|
6.8 | Konstantin Statskiy | 46 |
| 113 | Неадекватные люди 2 |
|
6.8 | Roman Karimov | 805 |
| 114 | Second Sun |
|
6.8 | Rinat Tashimov | 7 |
| 115 | Профайл |
|
6.7 | Timur Bekmambetov | 6,592 |
| 116 | Петровы в гриппе |
|
6.7 | Kirill Serebrennikov | 2,857 |
| 117 | Сказка |
|
6.7 | Aleksandr Sokurov | 345 |
| 118 | Аманат |
|
6.7 | Rauf Kubayev | 485 |
| 119 | Казнь |
|
6.7 | Lado Kvataniya | 1,536 |
| 120 | Холоп |
|
6.7 | Klim Shipenko | 5,012 |
| 121 | Батя |
|
6.7 | Dmitriy Efimovich | 1,409 |
| 122 | Ника |
|
6.7 | Vasilisa Kuzmina | 216 |
| 123 | Конференция |
|
6.7 | Ivan I. Tverdovskiy | 406 |
| 124 | Многоэтажка |
|
6.7 | Anton Maslov | 341 |
| 125 | Француз |
|
6.7 | Andrey Smirnov | 278 |
| 126 | Сердце мира |
|
6.7 | Nataliya Meshchaninova | 619 |
| 127 | Я вернусь |
|
6.7 | Darya Shumakova | 20 |
| 128 | Анна |
|
6.6 | Luc Besson | 89,692 |
| 129 | Балканский рубеж |
|
6.6 | Andrey Volgin | 10,306 |
| 130 | Текст |
|
6.6 | Klim Shipenko | 3,340 |
| 131 | Калашников |
|
6.6 | Konstantin Buslov | 4,497 |
| 132 | Солдатик |
|
6.6 | Viktoria Fanasiutina | 772 |
| 133 | Razzhimaya kulaki |
|
6.6 | Kira Kovalenko | 1,541 |
| 134 | Айта |
|
6.6 | Stepan Burnashev | 198 |
| 135 | Страна Саша |
|
6.6 | Yuliya Trofimova | 103 |
| 136 | Молодой человек |
|
6.6 | Aleksandr Fomin | 646 |
| 137 | Мама, я дома |
|
6.6 | Vladimir Bitokov | 265 |
| 138 | Человек, который удивил всех |
|
6.6 | Natasha Merkulova | 942 |
| 139 | Громкая связь |
|
6.6 | Alexey Nuzhny | 1,412 |
| 140 | Голиаф |
|
6.6 | Adilkhan Yerzhanov | 69 |
| 141 | Я буду жить |
|
6.6 | Eduard Bordukov | 55 |
| 142 | Молоко |
|
6.6 | Karen Oganesyan | 99 |
| 143 | История одного назначения |
|
6.6 | Avdotya Smirnova | 581 |
| 144 | В плену у сакуры |
|
6.6 | Masaki Inoue | 31 |
| 145 | Будь моим Кириллом |
|
6.6 | Alla Eliseeva | 69 |
| 146 | Гранд канкан |
|
6.6 | Mikhail Kosyrev-Nesterov | 15 |
| 147 | Выйти из группы |
|
6.6 | Maria Tumova | 15 |
| 148 | Седьмой пробег по контуру Земного шара |
|
6.6 | Vitaliy Suslin | 14 |
| 149 | Квнщики |
|
6.6 | Ilya Aksyonov | 87 |
| 150 | ЭТЮД #2 |
|
6.6 | Andrey Burmistrov | 9 |
| 151 | Жена Чайковского |
|
6.5 | Kirill Serebrennikov | 1,262 |
| 152 | Лучшие в аду |
|
6.5 | Andrey Batov | 692 |
| 153 | ДАУ. Регенерация |
|
6.5 | Ilya Khrzhanovskiy | 610 |
| 154 | Огонь |
|
6.5 | Alexey Nuzhny | 1,514 |
| 155 | Подольские курсанты |
|
6.5 | Vadim Shmelyov | 1,739 |
| 156 | Непрощённый |
|
6.5 | Sarik Andreasyan | 1,269 |
| 157 | По-мужски |
|
6.5 | Maksim Kulagin | 258 |
| 158 | Лёд 2 |
|
6.5 | Zhora Kryzhovnikov | 821 |
| 159 | Я худею |
|
6.5 | Alexey Nuzhny | 2,415 |
| 160 | Здоровый человек |
|
6.5 | Pyotr Todorovskiy | 167 |
| 161 | Межсезонье |
|
6.5 | Aleksandr Khant | 356 |
| 162 | Чиновник |
|
6.5 | Vladimir Motashnev | 57 |
| 163 | Юморист |
|
6.5 | Michael Idov | 1,088 |
| 164 | Обходные пути |
|
6.5 | Ekaterina Selenkina | 64 |
| 165 | Далекие близкие |
|
6.5 | Ivan Sosnin | 153 |
| 166 | Вечное новое |
|
6.5 | Andrey Leskin | 7 |
| 167 | Проклятый чиновник |
|
6.5 | Sarik Andreasyan | 503 |
| 168 | Счастье в конверте |
|
6.5 | Svetlana Sukhanova | 101 |
| 169 | Вечер шутов, или Серьезно с приветом |
|
6.5 | Liliya Trofimova | 530 |
| 170 | Спутник |
|
6.4 | Egor Abramenko | 26,339 |
| 171 | Собибор |
|
6.4 | Konstantin Khabenskiy | 5,582 |
| 172 | Китобой |
|
6.4 | Philipp Yuryev | 1,502 |
| 173 | Довлатов |
|
6.4 | Aleksey German Jr. | 2,150 |
| 174 | Дело |
|
6.4 | Aleksey German Jr. | 373 |
| 175 | Один вдох |
|
6.4 | Elena Hazanova | 439 |
| 176 | Саша |
|
6.4 | Vladimir Bek | 18 |
| 177 | На острие |
|
6.4 | Eduard Bordukov | 410 |
| 178 | Ыт |
|
6.4 | Stepan Burnashev | 59 |
| 179 | Ван Гоги |
|
6.4 | Sergey Livnev | 393 |
| 180 | Сквозь чёрное стекло |
|
6.4 | Konstantin Lopushanskiy | 110 |
| 181 | О чём говорят мужчины. Продолжение |
|
6.4 | Flyuza Farkhshatova | 1,560 |
| 182 | Бык |
|
6.4 | Boris Akopov | 880 |
| 183 | Простой карандаш |
|
6.4 | Natalya Nazarova | 182 |
| 184 | Хэппи-энд |
|
6.4 | Evgeniy Shelyakin | 331 |
| 185 | Глубокие реки |
|
6.4 | Vladimir Bitokov | 190 |
| 186 | Про Лёлю и Миньку |
|
6.4 | Anna Tchernakova | 36 |
| 187 | Слоны могут играть в футбол |
|
6.4 | Mikhail Segal | 222 |
| 188 | Керосин |
|
6.4 | Yusup Razykov | 138 |
| 189 | Osen |
|
6.4 | Vadim Kostrov | 12 |
| 190 | Все о нас |
|
6.4 | Sasha Tse | 10 |
| 191 | On the Dream’s Shore |
|
6.4 | Bair Uladaev | 8 |
| 192 | Опасные танцы |
|
6.4 | Ekaterina Dvigubskaya | 21 |
| 193 | Кома |
|
6.3 | Nikita Argunov | 11,247 |
| 194 | Майор Гром: Чумной Доктор |
|
6.3 | Oleg Trofim | 13,223 |
| 195 | ДАУ. Наташа |
|
6.3 | Ilya Khrzhanovskiy | 1,514 |
| 196 | Ваш репетитор |
|
6.3 | Anton Kolomeets | 79 |
| 197 | Чемпион мира |
|
6.3 | Aleksey Sidorov | 610 |
| 198 | ДАУ. Нора сын |
|
6.3 | Ilya Khrzhanovskiy | 25 |
| 199 | Лев Яшин. Вратарь моей мечты |
|
6.3 | Vasiliy Chiginskiy | 930 |
| 200 | Одесса |
|
6.3 | Valeriy Todorovskiy | 565 |
| 201 | Пугало |
|
6.3 | Dmitrii Davydov | 506 |
| 202 | Мальчик русский |
|
6.3 | Alexander Zolotukhin | 805 |
| 203 | Черный снег |
|
6.3 | Stepan Burnashev | 140 |
| 204 | Пара из будущего |
|
6.3 | Alexey Nuzhny | 578 |
| 205 | Свидетели |
|
6.3 | Konstantin Fam | 133 |
| 206 | Оторви и выбрось |
|
6.3 | Kirill Sokolov | 372 |
| 207 | Тренер |
|
6.3 | Danila Kozlovskiy | 1,463 |
| 208 | Марш утренней зари |
|
6.3 | Roman Kachanov | 56 |
| 209 | Трое |
|
6.3 | Anna Melikyan | 225 |
| 210 | Нефутбол |
|
6.3 | Maksim Sveshnikov | 411 |
| 211 | День слепого Валентина |
|
6.3 | Aleksandr Barshak | 49 |
| 212 | Блокадный дневник |
|
6.3 | Andrey Zaytsev | 120 |
| 213 | Накануне |
|
6.3 | Alisa Erokhina | 34 |
| 214 | Наша зима |
|
6.3 | Stepan Burnashev | 18 |
| 215 | Мой папа не подарок |
|
6.3 | Aleksandr Karpilovskiy | 29 |
| 216 | Самый Новый год! |
|
6.3 | Antonina Ruzhe | 82 |
| 217 | Узлы |
|
6.3 | Oleg Khamokov | 15 |
| 218 | Мёртвые ласточки |
|
6.3 | Natalia Pershina | 93 |
| 219 | Гупёшка |
|
6.3 | Vlad Furman | 44 |
| 220 | Istorii napisannye krovyu |
|
6.3 | Sergey A. | 58 |
| 221 | Molodi |
|
6.3 | Alexander Seliverstov | 8 |
| 222 | Красный призрак |
|
6.2 | Andrey Bogatyrev | 1,863 |
| 223 | Ганзель, Гретель и Агентство Магии |
|
6.2 | Alex Tsitsilin | 4,613 |
| 224 | Скажи ей |
|
6.2 | Aleksandr Molochnikov | 247 |
| 225 | Отель «Белград» |
|
6.2 | Konstantin Statskiy | 1,703 |
| 226 | Скиф |
|
6.2 | Rustam Mosafir | 2,663 |
| 227 | Подбросы |
|
6.2 | Ivan I. Tverdovskiy | 604 |
| 228 | Гудбай, Америка |
|
6.2 | Sarik Andreasyan | 1,303 |
| 229 | Продукты 24 |
|
6.2 | Michael Borodin | 159 |
| 230 | Сторож |
|
6.2 | Yuriy Bykov | 1,892 |
| 231 | Дочь рыбака |
|
6.2 | Uldus Bakhtiozina | 77 |
| 232 | Остерегайся псов |
|
6.2 | Nadia Bedzhanova | 128 |
| 233 | Штурм |
|
6.2 | Adilkhan Yerzhanov | 85 |
| 234 | Экспресс |
|
6.2 | Ruslan Bratov | 147 |
| 235 | Дунай |
|
6.2 | Lyubov Mulmenko | 85 |
| 236 | Маруся фореvа! |
|
6.2 | Aleksandr Galibin | 18 |
| 237 | Смотри как я |
|
6.2 | Egor Salnikov | 32 |
| 238 | Лена и справедливость |
|
6.2 | Ekaterina Vesheva | 30 |
| 239 | Селфи#Selfie |
|
6.2 | Maksim Boev | 19 |
| 240 | Половина неба |
|
6.2 | Sara Blecher | 16 |
| 241 | Иваново счастье |
|
6.2 | Ivan Sosnin | 105 |
| 242 | Старые шишки |
|
6.2 | Andrei Shavkero | 62 |
| 243 | Два билета домой |
|
6.2 | Dmitriy Meskhiev | 83 |
| 244 | Разговорник |
|
6.2 | Sergey Sentsov | 148 |
| 245 | Я свободен |
|
6.2 | Ilya Severov | 28 |
| 246 | День мёртвых |
|
6.2 | Viktor Ryzhakov | 94 |
| 247 | АРМЕН и Я |
|
6.2 | Maxim Airapetov | 32 |
| 248 | Дылда |
|
6.2 | Anastasiya Zhakulina | 6 |
| 249 | Лётчик |
|
6.1 | Renat Davletyarov | 1,488 |
| 250 | Братство |
|
6.1 | Pavel Lungin | 1,247 |
ggplot(movies, aes(x = as.numeric(as.character(votes)))) +
geom_histogram(binwidth = 50, fill = "#DE3163", color = "#811331") +
labs(
x = "Votes",
y = "Frequency"
) +
theme_minimal()
Fig. 1. Distribution of User Votes
ggplot(movies, aes(x = as.numeric(as.character(user_rating)))) +
geom_histogram(binwidth = 0.2, fill = "#F88379", color = "#A95C68") +
labs(
x = "Ratings",
y = "Frequency"
) +
theme_minimal()
Fig. 2. Distribution of User Ratings
movies$years <- as.character(movies$year)
movies$years[movies$years == "(2018)" | movies$years == "(I) (2018)" |
movies$years == "(II) (2018)" | movies$years == "(III) (2018)"] <- "2018"
movies$years[movies$years == "(2019)" | movies$years == "(I) (2019)" |
movies$years == "(II) (2019)" | movies$years == "(IV) (2019)"] <- "2019"
movies$years[movies$years == "(2020)" | movies$years == "(I) (2020)" |
movies$years == "(II) (2020)"] <- "2020"
movies$years[movies$years == "(2021)" | movies$years == "(I) (2021)" |
movies$years == "(II) (2021)"] <- "2021"
movies$years[movies$years == "(2022)" | movies$years == "(I) (2022)"] <- "2022"
movies$years <- factor(movies$years, ordered = TRUE,
levels = c("2018", "2019", "2020", "2021", "2022"))
ggplot(data = movies,
aes(x = years,
fill = years))+
geom_bar(position = "dodge")+
labs(
x = "Year",
y = "Number of movies released"
)+
scale_fill_brewer(palette="Set2")+
theme(legend.position='none')
Fig. 3. Distribution of Movie Releases