Page 1

Chart A

dat %>% 
  drop_na() %>% 
  filter(year>1979) %>% 
  group_by(year,Party) %>% 
  summarise(passed=sum(all_pass)) %>%
  ggplot(
    aes(x=year,y=passed,fill=Party)) +
    geom_area() +
    labs(title="Number of Bills Passed Since 1980",x="Year",y="All Bills Passed") +
    scale_fill_manual(values=c("blue","red"))
## `summarise()` has grouped output by 'year'. You can override using the
## `.groups` argument.

Page 2

Column

Chart B

(dat%>%
  drop_na()%>%
  filter(congress==110) %>%
    ggplot(
      aes(x=votepct,y=all_pass,color=Party)) +
      geom_point() +
      labs(title="Passage and Vote Pct., 110th Congress",x="Vote Pct.",y="All Pass") +
      scale_color_manual(values=c("blue","red")) +
      geom_smooth()) %>%
  ggplotly()
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

Column

Chart C

(dat%>%
  drop_na()%>%
  filter(congress==110) %>%
    ggplot(
      aes(x=dwnom1,y=all_pass,color=Party)) +
      geom_point() +
      labs(title="Passage and Ideology, 110th Congress",x="DW Nominate.",y="All Pass") +
      scale_color_manual(values=c("blue","red")) +
      geom_smooth(method=lm)) %>%
  ggplotly()
## `geom_smooth()` using formula = 'y ~ x'

Page 3

Column

####hint: this figure uses selectInput with the multiple option set to true and with the options set up so that all states are initially selected.

renderPlot(
  dat %>% 
    group_by(st_name) %>% 
    filter(congress==110) %>%
    summarise(passed=sum(all_pass))%>%
    ggplot(
      aes(x=passed,y=st_name)) +
      geom_bar(stat="identity") +
      labs(title="Total Bills Passed by State Delegations, 110th Congress",x="Total Bills Passed Per State",y="State Name")
  
)