I got the first data from the student: Sean Amato. I saved that on my github after I downloaded that on Slack.
df1 = read.csv('https://raw.githubusercontent.com/Kossi-Akplaka/Data607-data_acquisition_and_management/main/Project%202/Data1-Manufacturing.csv', header = TRUE)
df1## Work.Orders X Work.Order.Status X.1 X.2 X.3
## 1 Building Type NOASSIGN WORKASSIGN WORKPLAN WORKSCHED
## 2 B7 Prev Maintenance 16 44 47 93
## 3 Corr Maintenacnce 20 7 8 4
## 4 B23 Prev Maintenance 75 47 24 77
## 5 Corr Maintenacnce 8 20 8 3
## 6 B30 Prev Maintenance 59 10 15 54
## 7 Corr Maintenacnce 15 11 18 4
## X.4 X.5
## 1 INPROG COMP
## 2 46 2367
## 3 16 326
## 4 41 1482
## 5 18 526
## 6 51 2345
## 7 8 123
First we can remove the header of the data frame and make the second column as a header
## Building Type NOASSIGN WORKASSIGN WORKPLAN WORKSCHED INPROG COMP
## 2 B7 Prev Maintenance 16 44 47 93 46 2367
## 3 Corr Maintenacnce 20 7 8 4 16 326
## 4 B23 Prev Maintenance 75 47 24 77 41 1482
## 5 Corr Maintenacnce 8 20 8 3 18 526
## 6 B30 Prev Maintenance 59 10 15 54 51 2345
## 7 Corr Maintenacnce 15 11 18 4 8 123
Now, we can fill up the missing value for Building
## Building Type NOASSIGN WORKASSIGN WORKPLAN WORKSCHED INPROG COMP
## 2 B7 Prev Maintenance 16 44 47 93 46 2367
## 3 B7 Corr Maintenacnce 20 7 8 4 16 326
## 4 B23 Prev Maintenance 75 47 24 77 41 1482
## 5 B23 Corr Maintenacnce 8 20 8 3 18 526
## 6 B30 Prev Maintenance 59 10 15 54 51 2345
## 7 B30 Corr Maintenacnce 15 11 18 4 8 123
Now, we can transform the data from wide to long format.
## [1] "Building" "Type" "NOASSIGN" "WORKASSIGN" "WORKPLAN"
## [6] "WORKSCHED" "INPROG" "COMP"
df1_long <- df1 %>%
pivot_longer(cols = c( "NOASSIGN", "WORKASSIGN","WORKPLAN",
"WORKSCHED" ,"INPROG" , "COMP"),
names_to = "Order_Status",
values_to = "Count")
head(df1_long, 7)## # A tibble: 7 × 4
## Building Type Order_Status Count
## <chr> <chr> <chr> <chr>
## 1 B7 Prev Maintenance NOASSIGN 16
## 2 B7 Prev Maintenance WORKASSIGN 44
## 3 B7 Prev Maintenance WORKPLAN 47
## 4 B7 Prev Maintenance WORKSCHED 93
## 5 B7 Prev Maintenance INPROG 46
## 6 B7 Prev Maintenance COMP 2367
## 7 B7 Corr Maintenacnce NOASSIGN 20
We have a tidy data ready for analysis. We can plot a Pareto chart. you can find more detail how to create a Pareto chart in this article
##
## Pareto chart analysis for df1_long$Count
## Frequency Cum.Freq. Percentage Cum.Percent.
## F 2.367000e+03 2.367000e+03 2.945495e+01 2.945495e+01
## D1 2.345000e+03 4.712000e+03 2.918118e+01 5.863614e+01
## R 1.482000e+03 6.194000e+03 1.844201e+01 7.707815e+01
## X 5.260000e+02 6.720000e+03 6.545545e+00 8.362369e+01
## L 3.260000e+02 7.046000e+03 4.056745e+00 8.768044e+01
## J1 1.230000e+02 7.169000e+03 1.530612e+00 8.921105e+01
## D 9.300000e+01 7.262000e+03 1.157292e+00 9.036834e+01
## P 7.700000e+01 7.339000e+03 9.581882e-01 9.132653e+01
## M 7.500000e+01 7.414000e+03 9.333001e-01 9.225983e+01
## Y 5.900000e+01 7.473000e+03 7.341961e-01 9.299403e+01
## B1 5.400000e+01 7.527000e+03 6.719761e-01 9.366600e+01
## C1 5.100000e+01 7.578000e+03 6.346441e-01 9.430065e+01
## C 4.700000e+01 7.625000e+03 5.848681e-01 9.488552e+01
## N 4.700000e+01 7.672000e+03 5.848681e-01 9.547038e+01
## E 4.600000e+01 7.718000e+03 5.724241e-01 9.604281e+01
## B 4.400000e+01 7.762000e+03 5.475361e-01 9.659034e+01
## Q 4.100000e+01 7.803000e+03 5.102041e-01 9.710055e+01
## O 2.400000e+01 7.827000e+03 2.986560e-01 9.739920e+01
## G 2.000000e+01 7.847000e+03 2.488800e-01 9.764808e+01
## T 2.000000e+01 7.867000e+03 2.488800e-01 9.789696e+01
## W 1.800000e+01 7.885000e+03 2.239920e-01 9.812096e+01
## G1 1.800000e+01 7.903000e+03 2.239920e-01 9.834495e+01
## A 1.600000e+01 7.919000e+03 1.991040e-01 9.854405e+01
## K 1.600000e+01 7.935000e+03 1.991040e-01 9.874316e+01
## A1 1.500000e+01 7.950000e+03 1.866600e-01 9.892982e+01
## E1 1.500000e+01 7.965000e+03 1.866600e-01 9.911648e+01
## F1 1.100000e+01 7.976000e+03 1.368840e-01 9.925336e+01
## Z 1.000000e+01 7.986000e+03 1.244400e-01 9.937780e+01
## I 8.000000e+00 7.994000e+03 9.955202e-02 9.947735e+01
## S 8.000000e+00 8.002000e+03 9.955202e-02 9.957690e+01
## U 8.000000e+00 8.010000e+03 9.955202e-02 9.967646e+01
## I1 8.000000e+00 8.018000e+03 9.955202e-02 9.977601e+01
## H 7.000000e+00 8.025000e+03 8.710801e-02 9.986312e+01
## J 4.000000e+00 8.029000e+03 4.977601e-02 9.991289e+01
## H1 4.000000e+00 8.033000e+03 4.977601e-02 9.996267e+01
## V 3.000000e+00 8.036000e+03 3.733201e-02 1.000000e+02