library(ggplot2)

Replicate the examples and complete the 5 of the exercises below.

Section 2.4 Binomial Distribution

Example 2.4-5 p. 67

Try the code

# the pmf
dbinom(x=2,size = 8,prob = 0.2)

Example 2.4-7 p. 67

Try the code

# the cdf
pbinom(q = 8,size = 10,prob = 0.8) # P(X<=8)
# see if it is the same as
1-dbinom(9,10,0.8)-dbinom(10,10,0.8)

Example 2.4-8 p. 68

Try the code

pbinom(q = 5,size = 10,prob = 0.5, lower.tail = TRUE)

pbinom(q=5, size=10, prob=0.5, lower.tail = FALSE) # P(X>=6)

Problem 2.4-7 p. 72

Try the code

# part (d)
# draw two random variables from uniform distribution U(0,1) (to be discussed in Chapter 3)
x<-runif(n = 2000,min=0,max=1)
y<-runif(n = 2000,min=0,max=1)

# Count to number of point in the unit circle that is in 1st quadrant only

pQ1 <-sum(x^2+y^2<1)

# probability of W
pw<-pQ1/2000
pw

# how does it compare to pi/4
pi/4

Problem 2.4-9 p. 73

Try the code

# (b) \
# mean
20*0.8

# variance
var<- 20*0.8*0.2
var

sdev <-sqrt(var)
sdev

# (c)

# P(X=15)
dbinom(x = 15,size = 20,prob = 0.8)

# P(X>15)
1-pbinom(q = 15,size = 20,prob = 0.8, lower.tail = TRUE)
# pbinom(q = 15, size = 20, prob = 0.8, lower.tail = FALSE) # or using lower.tail = FALSE

# P(X<=15)
pbinom(q = 15,size = 20,prob = 0.8, lower.tail = TRUE)

Problem 2.4-4 p. 72

# (b)
# P(X>=2)

1-dbinom(0,7,0.15)-dbinom(1,7,0.15)

# P(X>=2)=1-P(X<=1)
1-pbinom(1,7,0.15)

pbinom(1,7,0.15,lower.tail = FALSE)

Example 2.5-1 p. 75

# P(X>=4)=P(X>3)
1-pgeom(q = 2,prob = 1/4, lower.tail = TRUE)
# or equivalently 
pgeom(q = 2,prob = 1/4, lower.tail = FALSE)

Example 2.6-1 p. 82

# P(X<=6)
ppois(q = 6,lambda = 5)

# P(X>5)
ppois(q = 5,lambda = 5,lower.tail = FALSE)

# P(X=6)
dpois(x = 6,lambda = 5)

Example 2.6-4 p. 83

# P(X>=5)=P(X>4)
ppois(4,6,lower.tail = FALSE)

Problem 2.6-2 p. 85

# P(X=2) for Poisson(3)
dpois(2,3)

Problem 2.6-3 p. 85

# P(X>10) for Poisson(11)
ppois(q = 10,lambda = 11,lower.tail = FALSE)

# or

1-ppois(q = 10,lambda = 11)

Problem 2.6-5 p. 85

# P(X<=1) for Poisson(225/150)
ppois(q = 1,lambda = 225/150)

Problem 2.6-8 p. 85

# Using b(n=1000,p=0.005)
pbinom(q = 1,size = 1000,prob = 0.005)
 
# Using Poisson(lambda=n*p)
ppois(q = 1,lambda = 5)

# Using Poisson(5) to find P(4<=X <=6)
ppois(q = 6,lambda = 5)-ppois(q = 3,lambda = 5)

Exercise 1 If \(X \sim b(10,0.2)\). Find the \(P(2 < X < 4)\).

# Parameters
n <- 10    # Number of trials
p <- 0.2   # Probability of success

# Calculate P(2 < X < 4)
prob <- pbinom(4, size = n, prob = p) - pbinom(2, size = n, prob = p)

# Print the result
print(prob)

Exercise 2 If \(X \sim b(10,0.2)\). Find the \(P(2 \le X \le 4)\).

# Parameters
n <- 10    # Number of trials
p <- 0.2   # Probability of success

# Calculate P(2 <= X <= 4)
prob <- pbinom(4, size = n, prob = p) - pbinom(1, size = n, prob = p)

# Print the result
print(prob)

Exercise 3 If \(X \sim Poisson(4)\). Find the \(P(X \le 2)\).

# Parameter
lambda <- 4

# Calculate P(X <= 2)
prob <- ppois(2, lambda)

# Print the result
print(prob)

Exercise 4 If \(X \sim Poisson(3)\). Find the \(P(2 \le X \le 7)\).

# Parameter
lambda <- 3

# Calculate P(2 <= X <= 7)
prob <- ppois(7, lambda) - ppois(1, lambda)

# Print the result
print(prob)

Exercise 5 Draw a 1000 random observations from uniform distribution U(0,1) store them in a vector x. Do it over and store the values in a vector y. Compare the sum(x) and sum(y). Which one is bigger? Y is bigger

Try the code

LS0tDQp0aXRsZTogUiBMYWIgMiBFeGVyY2lzZSAtIFByb2JhYmlsaXR5IA0KYXV0aG9yOiAiS2hhbGkgQS4gQ3Jhd2ZvcmQiDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkNCmBgYA0KDQpgYGB7ciBwYWNrYWdlc30NCmxpYnJhcnkoZ2dwbG90MikNCg0KYGBgDQoNCiMjIFJlcGxpY2F0ZSB0aGUgZXhhbXBsZXMgYW5kIGNvbXBsZXRlIHRoZSAqKjUqKiBvZiB0aGUgZXhlcmNpc2VzIGJlbG93Lg0KDQojIyMgU2VjdGlvbiAyLjQgQmlub21pYWwgRGlzdHJpYnV0aW9uDQoNCioqRXhhbXBsZSAyLjQtNSBwLiA2NyoqDQoNClRyeSB0aGUgY29kZQ0KDQpgYGB7cn0NCiMgdGhlIHBtZg0KZGJpbm9tKHg9MixzaXplID0gOCxwcm9iID0gMC4yKQ0KYGBgDQoNCioqRXhhbXBsZSAyLjQtNyBwLiA2NyoqDQoNClRyeSB0aGUgY29kZQ0KDQpgYGB7cn0NCiMgdGhlIGNkZg0KcGJpbm9tKHEgPSA4LHNpemUgPSAxMCxwcm9iID0gMC44KSAjIFAoWDw9OCkNCiMgc2VlIGlmIGl0IGlzIHRoZSBzYW1lIGFzDQoxLWRiaW5vbSg5LDEwLDAuOCktZGJpbm9tKDEwLDEwLDAuOCkNCmBgYA0KDQoqKkV4YW1wbGUgMi40LTggcC4gNjgqKg0KDQpUcnkgdGhlIGNvZGUNCg0KYGBge3J9DQpwYmlub20ocSA9IDUsc2l6ZSA9IDEwLHByb2IgPSAwLjUsIGxvd2VyLnRhaWwgPSBUUlVFKQ0KDQpwYmlub20ocT01LCBzaXplPTEwLCBwcm9iPTAuNSwgbG93ZXIudGFpbCA9IEZBTFNFKSAjIFAoWD49NikNCmBgYA0KDQoqKlByb2JsZW0gMi40LTcgcC4gNzIqKg0KDQpUcnkgdGhlIGNvZGUNCg0KYGBge3J9DQojIHBhcnQgKGQpDQojIGRyYXcgdHdvIHJhbmRvbSB2YXJpYWJsZXMgZnJvbSB1bmlmb3JtIGRpc3RyaWJ1dGlvbiBVKDAsMSkgKHRvIGJlIGRpc2N1c3NlZCBpbiBDaGFwdGVyIDMpDQp4PC1ydW5pZihuID0gMjAwMCxtaW49MCxtYXg9MSkNCnk8LXJ1bmlmKG4gPSAyMDAwLG1pbj0wLG1heD0xKQ0KDQojIENvdW50IHRvIG51bWJlciBvZiBwb2ludCBpbiB0aGUgdW5pdCBjaXJjbGUgdGhhdCBpcyBpbiAxc3QgcXVhZHJhbnQgb25seQ0KDQpwUTEgPC1zdW0oeF4yK3leMjwxKQ0KDQojIHByb2JhYmlsaXR5IG9mIFcNCnB3PC1wUTEvMjAwMA0KcHcNCg0KIyBob3cgZG9lcyBpdCBjb21wYXJlIHRvIHBpLzQNCnBpLzQNCmBgYA0KDQoqKlByb2JsZW0gMi40LTkgcC4gNzMqKg0KDQpUcnkgdGhlIGNvZGUNCg0KYGBge3J9DQojIChiKSBcDQojIG1lYW4NCjIwKjAuOA0KDQojIHZhcmlhbmNlDQp2YXI8LSAyMCowLjgqMC4yDQp2YXINCg0Kc2RldiA8LXNxcnQodmFyKQ0Kc2Rldg0KDQojIChjKQ0KDQojIFAoWD0xNSkNCmRiaW5vbSh4ID0gMTUsc2l6ZSA9IDIwLHByb2IgPSAwLjgpDQoNCiMgUChYPjE1KQ0KMS1wYmlub20ocSA9IDE1LHNpemUgPSAyMCxwcm9iID0gMC44LCBsb3dlci50YWlsID0gVFJVRSkNCiMgcGJpbm9tKHEgPSAxNSwgc2l6ZSA9IDIwLCBwcm9iID0gMC44LCBsb3dlci50YWlsID0gRkFMU0UpICMgb3IgdXNpbmcgbG93ZXIudGFpbCA9IEZBTFNFDQoNCiMgUChYPD0xNSkNCnBiaW5vbShxID0gMTUsc2l6ZSA9IDIwLHByb2IgPSAwLjgsIGxvd2VyLnRhaWwgPSBUUlVFKQ0KDQpgYGANCg0KKipQcm9ibGVtIDIuNC00IHAuIDcyKioNCg0KYGBge3J9DQojIChiKQ0KIyBQKFg+PTIpDQoNCjEtZGJpbm9tKDAsNywwLjE1KS1kYmlub20oMSw3LDAuMTUpDQoNCiMgUChYPj0yKT0xLVAoWDw9MSkNCjEtcGJpbm9tKDEsNywwLjE1KQ0KDQpwYmlub20oMSw3LDAuMTUsbG93ZXIudGFpbCA9IEZBTFNFKQ0KYGBgDQoNCioqRXhhbXBsZSAyLjUtMSBwLiA3NSoqDQoNCmBgYHtyfQ0KIyBQKFg+PTQpPVAoWD4zKQ0KMS1wZ2VvbShxID0gMixwcm9iID0gMS80LCBsb3dlci50YWlsID0gVFJVRSkNCiMgb3IgZXF1aXZhbGVudGx5IA0KcGdlb20ocSA9IDIscHJvYiA9IDEvNCwgbG93ZXIudGFpbCA9IEZBTFNFKQ0KDQpgYGANCg0KKipFeGFtcGxlIDIuNi0xIHAuIDgyKioNCg0KYGBge3J9DQojIFAoWDw9NikNCnBwb2lzKHEgPSA2LGxhbWJkYSA9IDUpDQoNCiMgUChYPjUpDQpwcG9pcyhxID0gNSxsYW1iZGEgPSA1LGxvd2VyLnRhaWwgPSBGQUxTRSkNCg0KIyBQKFg9NikNCmRwb2lzKHggPSA2LGxhbWJkYSA9IDUpDQpgYGANCg0KKipFeGFtcGxlIDIuNi00IHAuIDgzKioNCg0KYGBge3J9DQojIFAoWD49NSk9UChYPjQpDQpwcG9pcyg0LDYsbG93ZXIudGFpbCA9IEZBTFNFKQ0KYGBgDQoNCioqUHJvYmxlbSAyLjYtMiBwLiA4NSoqDQoNCmBgYHtyfQ0KIyBQKFg9MikgZm9yIFBvaXNzb24oMykNCmRwb2lzKDIsMykNCmBgYA0KDQoqKlByb2JsZW0gMi42LTMgcC4gODUqKg0KDQpgYGB7cn0NCiMgUChYPjEwKSBmb3IgUG9pc3NvbigxMSkNCnBwb2lzKHEgPSAxMCxsYW1iZGEgPSAxMSxsb3dlci50YWlsID0gRkFMU0UpDQoNCiMgb3INCg0KMS1wcG9pcyhxID0gMTAsbGFtYmRhID0gMTEpDQpgYGANCg0KKipQcm9ibGVtIDIuNi01IHAuIDg1KioNCg0KYGBge3J9DQojIFAoWDw9MSkgZm9yIFBvaXNzb24oMjI1LzE1MCkNCnBwb2lzKHEgPSAxLGxhbWJkYSA9IDIyNS8xNTApDQoNCmBgYA0KDQoqKlByb2JsZW0gMi42LTggcC4gODUqKg0KDQpgYGB7cn0NCiMgVXNpbmcgYihuPTEwMDAscD0wLjAwNSkNCnBiaW5vbShxID0gMSxzaXplID0gMTAwMCxwcm9iID0gMC4wMDUpDQogDQojIFVzaW5nIFBvaXNzb24obGFtYmRhPW4qcCkNCnBwb2lzKHEgPSAxLGxhbWJkYSA9IDUpDQoNCiMgVXNpbmcgUG9pc3Nvbig1KSB0byBmaW5kIFAoNDw9WCA8PTYpDQpwcG9pcyhxID0gNixsYW1iZGEgPSA1KS1wcG9pcyhxID0gMyxsYW1iZGEgPSA1KQ0KYGBgDQoNCioqRXhlcmNpc2UgMSoqIElmICRYIFxzaW0gYigxMCwwLjIpJC4gRmluZCB0aGUgJFAoMiA8IFggPCA0KSQuDQoNCmBgYHtyfQ0KIyBQYXJhbWV0ZXJzDQpuIDwtIDEwICAgICMgTnVtYmVyIG9mIHRyaWFscw0KcCA8LSAwLjIgICAjIFByb2JhYmlsaXR5IG9mIHN1Y2Nlc3MNCg0KIyBDYWxjdWxhdGUgUCgyIDwgWCA8IDQpDQpwcm9iIDwtIHBiaW5vbSg0LCBzaXplID0gbiwgcHJvYiA9IHApIC0gcGJpbm9tKDIsIHNpemUgPSBuLCBwcm9iID0gcCkNCg0KIyBQcmludCB0aGUgcmVzdWx0DQpwcmludChwcm9iKQ0KDQpgYGANCg0KKipFeGVyY2lzZSAyKiogSWYgJFggXHNpbSBiKDEwLDAuMikkLiBGaW5kIHRoZSAkUCgyIFxsZSBYIFxsZSA0KSQuDQoNCmBgYHtyfQ0KIyBQYXJhbWV0ZXJzDQpuIDwtIDEwICAgICMgTnVtYmVyIG9mIHRyaWFscw0KcCA8LSAwLjIgICAjIFByb2JhYmlsaXR5IG9mIHN1Y2Nlc3MNCg0KIyBDYWxjdWxhdGUgUCgyIDw9IFggPD0gNCkNCnByb2IgPC0gcGJpbm9tKDQsIHNpemUgPSBuLCBwcm9iID0gcCkgLSBwYmlub20oMSwgc2l6ZSA9IG4sIHByb2IgPSBwKQ0KDQojIFByaW50IHRoZSByZXN1bHQNCnByaW50KHByb2IpDQpgYGANCg0KKipFeGVyY2lzZSAzKiogSWYgJFggXHNpbSBQb2lzc29uKDQpJC4gRmluZCB0aGUgJFAoWCBcbGUgMikkLg0KDQpgYGB7cn0NCiMgUGFyYW1ldGVyDQpsYW1iZGEgPC0gNA0KDQojIENhbGN1bGF0ZSBQKFggPD0gMikNCnByb2IgPC0gcHBvaXMoMiwgbGFtYmRhKQ0KDQojIFByaW50IHRoZSByZXN1bHQNCnByaW50KHByb2IpDQpgYGANCg0KKipFeGVyY2lzZSA0KiogSWYgJFggXHNpbSBQb2lzc29uKDMpJC4gRmluZCB0aGUgJFAoMiBcbGUgWCBcbGUgNykkLg0KDQpgYGB7cn0NCiMgUGFyYW1ldGVyDQpsYW1iZGEgPC0gMw0KDQojIENhbGN1bGF0ZSBQKDIgPD0gWCA8PSA3KQ0KcHJvYiA8LSBwcG9pcyg3LCBsYW1iZGEpIC0gcHBvaXMoMSwgbGFtYmRhKQ0KDQojIFByaW50IHRoZSByZXN1bHQNCnByaW50KHByb2IpDQpgYGANCg0KKipFeGVyY2lzZSA1KiogRHJhdyBhIGAxMDAwYCByYW5kb20gb2JzZXJ2YXRpb25zIGZyb20gdW5pZm9ybSBkaXN0cmlidXRpb24gYFUoMCwxKWAgc3RvcmUgdGhlbSBpbiBhIHZlY3RvciBgeGAuIERvIGl0IG92ZXIgYW5kIHN0b3JlIHRoZSB2YWx1ZXMgaW4gYSB2ZWN0b3IgYHlgLiBDb21wYXJlIHRoZSBgc3VtKHgpYCBhbmQgYHN1bSh5KWAuIFdoaWNoIG9uZSBpcyBiaWdnZXI/IFkgaXMgYmlnZ2VyDQoNClRyeSB0aGUgY29kZQ0KDQpgYGB7cn0NCnNldC5zZWVkKDEwKQ0KeDwtcnVuaWYoMjAwMCwwLDEpDQp5PC1ydW5pZigyMDAwLDAsMSkNCnN1bSh4KQ0Kc3VtKHkpDQpgYGANCg==