Load Libraries

# detach("package:ltm", unload = TRUE)
# detach("package:MASS", unload = TRUE)

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.3     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# library(ICC)
# library(multicon)
library(readxl)
library(lubridate)
library(janitor)
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
# library(lmerTest)
# library(lme4)
# install.packages("psych")
# library(psych)

# install.packages("multicon")


# install.packages("ltm")

source('C:/Users/mark/Documents/GitHub/Helpful-R-Code/gnu.data.qv.R')
source('C:/Users/mark/Documents/GitHub/Helpful-R-Code/gnu.save.R')
source('C:/Users/mark/Documents/GitHub/Helpful-R-Code/gnu.mac.visit.dx.R')
source('C:/Users/mark/Documents/GitHub/Helpful-R-Code/gnu.merge.R')

Load task and task outcome data

# outcomes %>% select(adid, ftldcdr_global)tr

outcomes = read_excel(path = "C:/Users/mark/Documents/Current Projects/Reliability/update from clayton/mobile_mApp_baseline_validation_manuscript_10_02_2023_flanker_os_jt_dist_scored_cy_nb_fix_outliers.xlsx") %>% 
  mutate(first_login = ymd(first_login)) %>% 
  filter(!(prim_language %in% c("Spanish", "Russian", "Other")))
  #filter(baseline_flag_phase3 == 1)

#################################################################
# # # # # # 
# outcomes = outcomes %>%
#   filter(new_cohort==0 | new_cohort==1) # so can adjust based on if want new cohort or not.
# # 
# # outcomes = outcomes %>%
#   filter(new_cohort==0)
# # #
# outcomes = outcomes %>%
#   filter(new_cohort==1) # so can adjust based on if want new cohort or not.
# #
# outcomes = outcomes %>%
#   filter(ftldcdr_global=="0") # so can adjust based on if want new cohort or not.
# 
# outcomes = outcomes %>%
#   filter(os=="Android")
# 
#
# outcomes = outcomes %>%
#   filter(os=="iOS")
# # # so can adjust based on if want new cohort or not.
# # 
# # # #
# # outcomes = outcomes %>%
# #   filter(ftldcdr_global>0) # so can adjust based on if want new cohort or not.
# # # 
# # 
# # 
outcome.group<-"full" # "full", "validation" "original" "FTLDCDR0" "FTLDCDRgreater0.5" "Android" "iOS"
# 

####################################################################



outcomes_stroop = outcomes %>% 
  select(adid, visit_chapter, participant_id, chapter_adjusted, stroop_total_correct_wo_to, stroop_speed_accuracy) %>% 
  filter(!is.na(stroop_total_correct_wo_to)) %>% 
  arrange(adid, chapter_adjusted) %>% 
  group_by(adid) %>% 
  mutate(task_iteration = row_number()) %>% 
  select(adid, visit_chapter, participant_id, task_iteration, stroop_total_correct_wo_to, stroop_speed_accuracy)

outcomes_stroop_first_itrn = outcomes_stroop %>%
  filter(task_iteration == 1) %>% 
  ungroup() %>% 
  select(participant_id, visit_chapter)

outcomes_flanker = outcomes %>% 
  select(adid, visit_chapter , participant_id, 
         chapter_adjusted, flanker_total_time, flanker_speed_accuracy) %>% 
  filter(!is.na(flanker_total_time)) %>% 
  arrange(adid, chapter_adjusted) %>% 
  group_by(adid) %>% 
  mutate(task_iteration = row_number()) %>% 
  select(adid, visit_chapter, participant_id, task_iteration, flanker_total_time, flanker_speed_accuracy)

outcomes_flanker_first_itrn = outcomes_flanker %>% filter(task_iteration == 1) %>% 
  ungroup() %>% 
  select(participant_id, visit_chapter)

outcomes_gonogo = outcomes %>% 
  select(adid, visit_chapter, participant_id, 
         chapter_adjusted, gonogo_cor_hits_min_inc_rej) %>% 
  filter(!is.na(gonogo_cor_hits_min_inc_rej)) %>% 
  arrange(adid, chapter_adjusted) %>% 
  group_by(adid) %>% 
  mutate(task_iteration = row_number()) %>% 
  select(adid, visit_chapter, participant_id, task_iteration, gonogo_cor_hits_min_inc_rej)

outcomes_gonogo_first_itrn = outcomes_gonogo %>% filter(task_iteration == 1) %>% 
  ungroup() %>% 
  select(participant_id, visit_chapter)

outcomes_humi = outcomes %>% 
  select(adid, visit_chapter, participant_id, 
         chapter_adjusted, humi_corr_by_chap) %>% 
  filter(!is.na(humi_corr_by_chap)) %>% 
  arrange(adid, chapter_adjusted) %>% 
  group_by(adid) %>% 
  mutate(task_iteration = row_number()) %>% 
  select(adid, visit_chapter, participant_id, task_iteration, humi_corr_by_chap)

outcomes_humi_first_itrn = outcomes_humi %>% filter(task_iteration == 1) %>% 
  ungroup() %>% 
  select(participant_id, visit_chapter)

outcomes_nback = outcomes %>% 
  select(adid, visit_chapter, participant_id, 
         chapter_adjusted, nback_dprime) %>% 
  filter(!is.na(nback_dprime)) %>% 
  arrange(adid, chapter_adjusted) %>% 
  group_by(adid) %>% 
  mutate(task_iteration = row_number()) %>% 
  select(adid, visit_chapter, participant_id, task_iteration, nback_dprime)

outcomes_nback_first_itrn = outcomes_nback %>% filter(task_iteration == 1) %>% 
  ungroup() %>% 
  select(participant_id, visit_chapter)

outcomes_card = outcomes %>% 
  select(adid, visit_chapter, participant_id,
         chapter_adjusted, card_total_rounds) %>%
  filter(!is.na(card_total_rounds)) %>% 
  arrange(adid, chapter_adjusted) %>% 
  group_by(adid) %>% 
  mutate(task_iteration = row_number()) %>% 
  select(adid, visit_chapter, participant_id, task_iteration, card_total_rounds)

outcomes_card_first_itrn = outcomes_card %>% filter(task_iteration == 1) %>% 
  ungroup() %>% 
  select(participant_id, visit_chapter)

outcomes_task_itrn = outcomes %>% select(adid) %>% unique()

outcomes_task_itrn = 
  outcomes_task_itrn %>% 
  full_join(outcomes_stroop %>% select(-visit_chapter, -participant_id), by = "adid") %>% 
  mutate(task_iteration = as.numeric(task_iteration), 
         task_iteration = if_else(is.na(task_iteration), 1, task_iteration)) %>% 
  full_join(outcomes_flanker %>% select(-visit_chapter, -participant_id), by = c("adid", "task_iteration")) %>% 
  full_join(outcomes_gonogo %>% select(-visit_chapter, -participant_id), by = c("adid", "task_iteration")) %>% 
  full_join(outcomes_humi %>% select(-visit_chapter, -participant_id), by = c("adid", "task_iteration")) %>% 
  full_join(outcomes_nback %>% select(-visit_chapter, -participant_id), by = c("adid", "task_iteration")) %>% 
  full_join(outcomes_card %>% select(-visit_chapter, -participant_id), by = c("adid", "task_iteration")) %>% 
  arrange(adid, task_iteration)

## full task datasets

outcomes_stroop_first_itrn
## # A tibble: 277 × 2
##    participant_id visit_chapter
##             <dbl>         <dbl>
##  1            765           0.1
##  2           3375           0.1
##  3            783           0.1
##  4            782           0.1
##  5            785           0.1
##  6            815           0.1
##  7            818           0.1
##  8            819           0.1
##  9            848           0.1
## 10            849           0.1
## # ℹ 267 more rows
stroop = read_csv(file = "stroop_raw_combined_202309.csv") %>% 
  janitor::clean_names() %>% 
  select(-folder) %>% unique() %>%
  inner_join(outcomes_stroop_first_itrn, by = c("participant_id", "visit_chapter"))
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.g.:
##   dat <- vroom(...)
##   problems(dat)
flanker = read_csv(file = "flanker_raw_combined_202309.csv") %>% janitor::clean_names()%>% 
  select(-folder) %>% unique()%>%
  inner_join(outcomes_flanker_first_itrn, by = c("participant_id", "visit_chapter"))

gonogo = read_csv(file = "gonogo_raw_combined_202309.csv") %>%
  janitor::clean_names()%>% 
  select(-folder) %>% unique()%>%
  inner_join(outcomes_gonogo_first_itrn, by = c("participant_id", "visit_chapter"))


humi = read_csv(file = "humi_raw_combined_202309.csv") %>%
  janitor::clean_names()%>% 
  select(-folder) %>% unique()%>%
  inner_join(outcomes_humi_first_itrn, by = c("participant_id", "visit_chapter"))
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.g.:
##   dat <- vroom(...)
##   problems(dat)
nback = read_csv(file = "nback_raw_combined_202309.csv") %>%
  janitor::clean_names()%>% 
  select(-folder) %>% unique() %>%
  inner_join(outcomes_nback_first_itrn, by = c("participant_id", "visit_chapter"))

  

card = read_csv(file = "card_raw_combined_202309.csv") %>%
  janitor::clean_names()%>% 
  select(-folder) %>% unique() %>%
  inner_join(outcomes_card_first_itrn, by = c("participant_id", "visit_chapter"))
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.g.:
##   dat <- vroom(...)
##   problems(dat)
stroop %>% group_by(participant_id) %>% count() %>% arrange(desc(n))
## # A tibble: 277 × 2
## # Groups:   participant_id [277]
##    participant_id     n
##             <dbl> <int>
##  1           9218   181
##  2           5393   135
##  3          12146   126
##  4           9971   123
##  5           7843   120
##  6           9476   118
##  7           7730   112
##  8           9018   112
##  9          10282   112
## 10           6466   111
## # ℹ 267 more rows
stroop %>% group_by(participant_id, file_name) %>% count() %>% arrange(desc(n))
## # A tibble: 278 × 3
## # Groups:   participant_id, file_name [278]
##    participant_id file_name                                    n
##             <dbl> <chr>                                    <int>
##  1           5393 participant5393_2021-08-06 16꞉52꞉52.csv    135
##  2          12146 participant12146_2023-07-25 19꞉26꞉16.csv   126
##  3           9971 participant9971_2022-10-15 16꞉49꞉47.csv    123
##  4           7843 participant7843_2022-01-22 15꞉39꞉37.csv    120
##  5           9476 participant9476_2022-08-10 13꞉50꞉35.csv    118
##  6           7730 participant7730_2022-01-07 06꞉06꞉02.csv    112
##  7           9018 participant9018_2022-06-08 16꞉49꞉00.csv    112
##  8          10282 participant10282_2022-11-29 19꞉47꞉44.csv   112
##  9           6466 participant6466_2021-09-13 15꞉31꞉08.csv    111
## 10           8860 participant8860_2022-05-13 00꞉45꞉19.csv    110
## # ℹ 268 more rows
flanker %>% group_by(participant_id) %>% count() %>% arrange(desc(n))
## # A tibble: 364 × 2
## # Groups:   participant_id [364]
##    participant_id     n
##             <dbl> <int>
##  1           9582   220
##  2            765   110
##  3            782   110
##  4            783   110
##  5            785   110
##  6            815   110
##  7            818   110
##  8            819   110
##  9            848   110
## 10            849   110
## # ℹ 354 more rows
flanker %>% group_by(participant_id, file_name) %>% count() %>% arrange(desc(n))
## # A tibble: 365 × 3
## # Groups:   participant_id, file_name [365]
##    participant_id file_name              n
##             <dbl> <chr>              <int>
##  1            765 participant765.csv   110
##  2            782 participant782.csv   110
##  3            783 participant783.csv   110
##  4            785 participant785.csv   110
##  5            815 participant815.csv   110
##  6            818 participant818.csv   110
##  7            819 participant819.csv   110
##  8            848 participant848.csv   110
##  9            849 participant849.csv   110
## 10            867 participant867.csv   110
## # ℹ 355 more rows
humi %>% group_by(participant_id) %>% count() %>% arrange(desc(n))
## # A tibble: 358 × 2
## # Groups:   participant_id [358]
##    participant_id     n
##             <dbl> <int>
##  1           8376    78
##  2           8410    78
##  3           9273    78
##  4          10670    77
##  5           7287    76
##  6           9038    76
##  7          11245    76
##  8            868    75
##  9           2040    75
## 10           4567    74
## # ℹ 348 more rows
humi %>% group_by(participant_id, file_name) %>% count() %>% arrange(desc(n))
## # A tibble: 358 × 3
## # Groups:   participant_id, file_name [358]
##    participant_id file_name                                    n
##             <dbl> <chr>                                    <int>
##  1           8376 participant8376_2022-03-20 22꞉08꞉42.csv     78
##  2           8410 participant8410_2022-03-30 22꞉03꞉43.csv     78
##  3           9273 participant9273_2022-07-13 20꞉10꞉11.csv     78
##  4          10670 participant10670_2023-01-20 14꞉53꞉33.csv    77
##  5           7287 participant7287_2021-11-16 21꞉10꞉34.csv     76
##  6           9038 participant9038_2022-05-29 02꞉59꞉47.csv     76
##  7          11245 participant11245_2023-02-23 02꞉40꞉16.csv    76
##  8            868 participant868.csv                          75
##  9           2040 participant2040_2020-07-28 02꞉05꞉07.csv     75
## 10           4567 participant4567_2021-06-04 01꞉02꞉52.csv     74
## # ℹ 348 more rows
gonogo %>% group_by(participant_id) %>% count() %>% arrange(desc(n))
## # A tibble: 334 × 2
## # Groups:   participant_id [334]
##    participant_id     n
##             <dbl> <int>
##  1           9575   198
##  2           1018   101
##  3           2245   101
##  4           8907   101
##  5           2157   100
##  6           2304   100
##  7           4729   100
##  8           5265   100
##  9           5463   100
## 10           6506   100
## # ℹ 324 more rows
gonogo %>% group_by(participant_id, file_name) %>% count() %>% arrange(desc(n))
## # A tibble: 335 × 3
## # Groups:   participant_id, file_name [335]
##    participant_id file_name                                   n
##             <dbl> <chr>                                   <int>
##  1           1018 participant1018.csv                       101
##  2           2245 participant2245_2020-09-14 22꞉26꞉33.csv   101
##  3           8907 participant8907_2022-05-26 16꞉55꞉27.csv   101
##  4           2157 participant2157_2020-08-20 18꞉34꞉00.csv   100
##  5           2304 participant2304_2020-09-16 21꞉43꞉13.csv   100
##  6           4729 participant4729_2021-06-11 01꞉17꞉48.csv   100
##  7           5265 participant5265_2021-07-23 18꞉36꞉58.csv   100
##  8           5463 participant5463_2022-08-17 21꞉10꞉02.csv   100
##  9           6506 participant6506_2021-09-23 01꞉30꞉46.csv   100
## 10           7420 participant7420_2021-12-02 02꞉04꞉33.csv   100
## # ℹ 325 more rows
card %>% group_by(participant_id) %>% count() %>% arrange(desc(n))
## # A tibble: 281 × 2
## # Groups:   participant_id [281]
##    participant_id     n
##             <dbl> <int>
##  1           2037    48
##  2           2130    48
##  3           2131    48
##  4           2245    48
##  5           2448    48
##  6           2520    48
##  7           2616    48
##  8           2670    48
##  9           2728    48
## 10           2921    48
## # ℹ 271 more rows
card %>% group_by(participant_id, file_name) %>% count() %>% arrange(desc(n))
## # A tibble: 281 × 3
## # Groups:   participant_id, file_name [281]
##    participant_id file_name                                   n
##             <dbl> <chr>                                   <int>
##  1           2037 participant2037_2020-07-27 21꞉36꞉19.csv    48
##  2           2130 participant2130_2020-08-16 03꞉23꞉46.csv    48
##  3           2131 participant2131_2020-08-15 19꞉17꞉17.csv    48
##  4           2245 participant2245_2020-09-12 12꞉24꞉17.csv    48
##  5           2448 participant2448_2020-10-07 22꞉02꞉07.csv    48
##  6           2520 participant2520_2020-10-12 17꞉14꞉33.csv    48
##  7           2616 participant2616_2020-10-21 19꞉22꞉31.csv    48
##  8           2670 participant2670_2020-10-27 00꞉08꞉11.csv    48
##  9           2728 participant2728_2020-11-05 21꞉34꞉10.csv    48
## 10           2921 participant2921_2020-11-16 23꞉00꞉18.csv    48
## # ℹ 271 more rows
nback %>% group_by(participant_id) %>% count() %>% arrange(desc(n))
## # A tibble: 269 × 2
## # Groups:   participant_id [269]
##    participant_id     n
##             <dbl> <int>
##  1           8928   114
##  2            785   113
##  3           2040   113
##  4           3155   113
##  5           4465   113
##  6           4478   113
##  7           4855   113
##  8           6944   113
##  9           8373   113
## 10           8383   113
## # ℹ 259 more rows
nback %>% group_by(participant_id, file_name) %>% count() %>% arrange(desc(n))
## # A tibble: 269 × 3
## # Groups:   participant_id, file_name [269]
##    participant_id file_name                                   n
##             <dbl> <chr>                                   <int>
##  1           8928 participant8928_2022-05-21 01꞉39꞉30.csv   114
##  2            785 participant785.csv                        113
##  3           2040 participant2040_2020-07-28 02꞉12꞉23.csv   113
##  4           3155 participant3155_2020-12-26 22꞉23꞉39.csv   113
##  5           4465 participant4465_2021-05-11 20꞉51꞉23.csv   113
##  6           4478 participant4478_2021-05-13 15꞉35꞉48.csv   113
##  7           4855 participant4855_2021-07-16 18꞉05꞉49.csv   113
##  8           6944 participant6944_2021-12-01 14꞉53꞉55.csv   113
##  9           8373 participant8373_2022-03-19 22꞉25꞉58.csv   113
## 10           8383 participant8383_2022-03-23 05꞉57꞉27.csv   113
## # ℹ 259 more rows
stroop_dedupe =
  stroop %>% select(participant_id, start_time) %>% unique() %>% 
  # mutate(file_name2 = file_name) %>% 
  # separate(file_name2, into = c("a", "b"), sep = "_") %>% 
  # separate(b, into = "b", sep = ".csv", extra = "drop") %>% 
   mutate(date = ymd_hms(start_time)) %>% 
  # select(-a, -b) %>% 
  arrange(participant_id, date) %>% 
  group_by(participant_id) %>% 
  mutate(index = row_number())

stroop =
  stroop %>% 
  left_join(stroop_dedupe,
            by = c("participant_id", "start_time")) %>% 
  filter(index == 1)


flanker_dedupe =
  flanker %>% select(participant_id, start_time) %>% unique() %>% 
  # mutate(file_name2 = file_name) %>% 
  # separate(file_name2, into = c("a", "b"), sep = "_") %>% 
  # separate(b, into = "b", sep = ".csv", extra = "drop") %>% 
   mutate(date = ymd_hms(start_time)) %>% 
  # select(-a, -b) %>% 
  arrange(participant_id, date) %>% 
  group_by(participant_id) %>% 
  mutate(index = row_number())

flanker =
  flanker %>% 
  left_join(flanker_dedupe, by = c("participant_id", "start_time")) %>% 
  filter(index == 1)


gonogo_dedupe =
  gonogo %>% select(participant_id, start_time) %>% unique() %>% 
  # mutate(file_name2 = file_name) %>% 
  # separate(file_name2, into = c("a", "b"), sep = "_") %>% 
  # separate(b, into = "b", sep = ".csv", extra = "drop") %>% 
  mutate(date = ymd_hms(start_time)) %>% 
  # select(-a, -b) %>% 
  arrange(participant_id, date) %>% 
  group_by(participant_id) %>% 
  mutate(index = row_number())

gonogo =
  gonogo %>% 
  left_join(gonogo_dedupe, by = c("participant_id", "start_time")) %>% 
  filter(index == 1)


humi_dedupe =
  humi %>% select(participant_id, start_time) %>% unique() %>% 
  # mutate(file_name2 = file_name) %>% 
  # separate(file_name2, into = c("a", "b"), sep = "_") %>% 
  # separate(b, into = "b", sep = ".csv", extra = "drop") %>% 
  mutate(date = ymd_hms(start_time)) %>% 
  # select(-a, -b) %>% 
  arrange(participant_id, date) %>% 
  group_by(participant_id) %>% 
  mutate(index = row_number())

humi =
  humi %>% 
  left_join(humi_dedupe, by = c("participant_id", "start_time")) %>% 
  filter(index == 1)


nback_dedupe =
  nback %>% select(participant_id, start_time) %>% unique() %>% 
  # mutate(file_name2 = file_name) %>% 
  # separate(file_name2, into = c("a", "b"), sep = "_") %>% 
  # separate(b, into = "b", sep = ".csv", extra = "drop") %>% 
  mutate(date = ymd_hms(start_time)) %>% 
  # select(-a, -b) %>% 
  arrange(participant_id, date) %>% 
  group_by(participant_id) %>% 
  mutate(index = row_number())

nback =
  nback %>% 
  left_join(nback_dedupe, by = c("participant_id", "start_time")) %>% 
  filter(index == 1)


card_dedupe =
  card %>% select(participant_id, start_time) %>% unique() %>% 
  # mutate(file_name2 = file_name) %>% 
  # separate(file_name2, into = c("a", "b"), sep = "_") %>% 
  # separate(b, into = "b", sep = ".csv", extra = "drop") %>% 
   mutate(date = ymd_hms(start_time)) %>% 
  # select(-a, -b) %>% 
  arrange(participant_id, date) %>% 
  group_by(participant_id) %>% 
  mutate(index = row_number())

card =
  card %>% 
  left_join(card_dedupe, by = c("participant_id", "start_time")) %>% 
  filter(index == 1)
stroop_cronbach_cong =
stroop %>% 
  filter(data_rounds_on_practice_mode == "FALSE",
         data_rounds_trial_type == "CONGRUENT") %>% 
  mutate(rxntime = (data_rounds_end - data_rounds_start)/100) %>% 
  select(participant_id, data_rounds_trial_number, rxntime) %>% 
  arrange(participant_id, data_rounds_trial_number) %>% 
  group_by(participant_id) %>% 
  mutate(trial_number_index = row_number()) %>% 
  select(-data_rounds_trial_number) %>% 
  pivot_wider(names_from = "trial_number_index", values_from = "rxntime", names_prefix = "trial_") %>% 
  ungroup() %>% 
  select(-participant_id, -trial_1)

stroop_cronbach_incong =
stroop %>% 
  filter(data_rounds_on_practice_mode == "FALSE",
         data_rounds_trial_type == "INCONGRUENT") %>% 
  mutate(rxntime = (data_rounds_end - data_rounds_start)/100) %>% 
  select(participant_id, data_rounds_trial_number, rxntime) %>% 
  arrange(participant_id, data_rounds_trial_number) %>% 
  group_by(participant_id) %>% 
  mutate(trial_number_index = row_number()) %>% 
  select(-data_rounds_trial_number) %>% 
  pivot_wider(names_from = "trial_number_index", values_from = "rxntime", names_prefix = "trial_") %>% 
  ungroup() %>% 
  select(-participant_id, -trial_1)
flanker_cronbach_cong =
flanker %>% 
  filter(data_rounds_on_practice_mode == "FALSE",
         data_rounds_trial_type == "congruent") %>% 
  mutate(rxntime = as.numeric(data_rounds_end) - as.numeric(data_rounds_start)) %>% 
  select(participant_id, data_rounds_trial_number, rxntime) %>% 
  arrange(participant_id, data_rounds_trial_number) %>% 
  group_by(participant_id) %>% 
  mutate(trial_number_index = row_number()) %>% 
  select(-data_rounds_trial_number) %>% 
  pivot_wider(names_from = "trial_number_index", values_from = "rxntime", names_prefix = "trial_") %>% 
  ungroup() %>% 
  select(-participant_id, -trial_1)



flanker_cronbach_incong =
flanker %>% 
  filter(data_rounds_on_practice_mode == "FALSE",
         data_rounds_trial_type == "incongruent") %>% 
  mutate(rxntime = as.numeric(data_rounds_end) - as.numeric(data_rounds_start)) %>% 
  select(participant_id, data_rounds_trial_number, rxntime) %>% 
  arrange(participant_id, data_rounds_trial_number) %>% 
  group_by(participant_id) %>% 
  mutate(trial_number_index = row_number()) %>% 
  select(-data_rounds_trial_number) %>% 
  pivot_wider(names_from = "trial_number_index", values_from = "rxntime", names_prefix = "trial_") %>% 
  ungroup() %>% 
  select(-participant_id, -trial_1)
gonogo_cronbach_go =
gonogo %>% 
  filter(data_rounds_on_practice_mode == "FALSE",
         data_rounds_trial_type == "Go") %>% 
  mutate(rxntime = data_rounds_end - data_rounds_start) %>% 
  select(participant_id, data_rounds_trial_number, rxntime) %>% 
  arrange(participant_id, data_rounds_trial_number) %>% 
  group_by(participant_id) %>% 
  mutate(trial_number_index = row_number()) %>% 
  select(-data_rounds_trial_number) %>% 
  pivot_wider(names_from = "trial_number_index", values_from = "rxntime", names_prefix = "trial_") %>% 
  ungroup() %>% 
  select(-participant_id, -trial_1)


gonogo_cronbach_nogo =
gonogo %>% 
  filter(data_rounds_on_practice_mode == "FALSE",
         data_rounds_trial_type == "No-go") %>% 
  mutate(rxntime = data_rounds_end - data_rounds_start) %>% 
  select(participant_id, data_rounds_trial_number, rxntime) %>% 
  arrange(participant_id, data_rounds_trial_number) %>% 
  group_by(participant_id) %>% 
  mutate(trial_number_index = row_number()) %>% 
  select(-data_rounds_trial_number) %>% 
  pivot_wider(names_from = "trial_number_index", values_from = "rxntime", names_prefix = "trial_") %>% 
  ungroup() %>% 
  select(-participant_id, -trial_1)
humi_cronbach =
humi %>% 
  filter(data_rounds_on_practice_mode == "FALSE") %>% 
  mutate(data_round_correct = if_else(data_rounds_is_correct == "TRUE", 1, 0)) %>% 
  select(participant_id, data_rounds_order_delivery_time, data_round_correct) %>% 
  arrange(participant_id, data_rounds_order_delivery_time) %>% 
  group_by(participant_id) %>% 
  mutate(trial_number_index = row_number()) %>% 
  select(-data_rounds_order_delivery_time) %>% 
  pivot_wider(names_from = "trial_number_index", values_from = "data_round_correct", names_prefix = "trial_") %>% 
  ungroup() %>% 
  select(-participant_id, -trial_1)
card_cronbach =
card %>% 
  mutate(data_round_correct = if_else(data_rounds_correct == "TRUE", 1, 0)) %>% 
  select(participant_id, data_rounds_trial_number, data_round_correct) %>% 
  arrange(participant_id, data_rounds_trial_number) %>% 
  group_by(participant_id) %>% 
  mutate(trial_number_index = row_number()) %>% 
  select(-data_rounds_trial_number) %>% 
  pivot_wider(names_from = "trial_number_index", values_from = "data_round_correct", names_prefix = "trial_") %>% 
  ungroup() %>% 
  select(-participant_id, -trial_1)
nback_cronbach =
nback %>% 
  filter(data_on_practice_mode == "FALSE") %>% 
  mutate(data_rounds_correct = if_else(data_rounds_correct == "TRUE", 1, 0)) %>% 
  select(participant_id, data_rounds_trial_number, data_rounds_correct) %>% 
  filter(!is.na(data_rounds_correct)) %>% 
  arrange(participant_id, data_rounds_trial_number) %>% 
  group_by(participant_id) %>% 
  mutate(trial_number_index = row_number()) %>% 
  select(-data_rounds_trial_number) %>% 
  pivot_wider(names_from = "trial_number_index", values_from = "data_rounds_correct", names_prefix = "trial_") %>% 
  ungroup() %>% 
  select(-participant_id, -trial_1)
if (outcome.group=="full") {
  library(ltm)
#   
#   
#   df.list<-list(stroop_cronbach_incong,stroop_cronbach_cong
#                  ) #datasets
# 
# #   for (ncol.i in 1:ncol(stroop_cronbach_cong)) {
# #     if(ncol.i==1){
# #       x<-as.data.frame(sum(is.na(stroop_cronbach_cong[,ncol.i])))
# #     } else {
# #       y<-as.data.frame(sum(is.na(stroop_cronbach_cong[,ncol.i])))
# #       x<-rbind(x,y)
# # 
# # }
# #   }
# #   plot(x$`sum(is.na(stroop_cronbach_cong[, ncol.i]))`)
# #   
#   df.list.string<-c("stroop_cronbach_incong","stroop_cronbach_cong")

  df.list<-list(stroop_cronbach_cong,stroop_cronbach_incong,
                flanker_cronbach_cong,flanker_cronbach_incong,
                gonogo_cronbach_go, gonogo_cronbach_nogo,
                humi_cronbach,
                nback_cronbach,
                card_cronbach) #datasets
  
  
  df.list.string<-c("stroop_cronbach_cong","stroop_cronbach_incong",
                    "flanker_cronbach_cong","flanker_cronbach_incong",
                    "gonogo_cronbach_go", "gonogo_cronbach_nogo",
                    "humi_cronbach",
                    "nback_cronbach",
                    "card_cronbach") #names need to match names of datasets, in same order
  
  min.part.percent<-.95
  bootstrap.n<-5
  
  ###do not change below###
  df.list.string.count<-1
  df.i=df.list[1]


  
  for (df.i in df.list) {
    df.cba<-as.data.frame(df.i)
    for (co.i in colnames(df.cba)) {
      data.sum<-sum(is.na(df.cba[co.i]))
      cnt<-nrow(df.cba)-data.sum
      if (cnt/nrow(df.cba)<min.part.percent) {
        
        #if (cnt/nrow(df.cba)<min.part.percent) {
        df.cba[co.i]<-NULL
        
      }
      
    }#co.i
    
    cba.names<-colnames(df.cba)[2:length(colnames(df.cba))]
    cba.name.start<-colnames(df.cba)[1]
    
    for (col.it.i in 1:length(cba.names)) {
      # 
      # tempdf<-as.data.frame(df.cba[cba.names[col.it.i]])
      # temodf.2<-as.data.frame(df.cba[cba.name.start[1]])
      # df.cba$start<-temodf.2[,1]
      # df.cba$end<-tempdf[,1]
      count=1
      while(TRUE){
        cba.temp <- try(cronbach.alpha(df.cba %>% dplyr::select(cba.name.start[1]: cba.names[col.it.i]), 
                                       standardized = FALSE, CI = TRUE, B = bootstrap.n, na.rm = TRUE),
                        silent=TRUE)
        count=count+1
        if(!is(cba.temp, 'try-error')) break
      }
      
      # cba.temp<-cronbach.alpha(df.cba %>% dplyr::select(cba.name.start[1]: cba.names[col.it.i]), standardized = FALSE, CI = TRUE, B = bootstrap.n, na.rm = TRUE)
      
      mat.CBA<-matrix(nrow=1, ncol=6, dimnames = list(c( df.list.string[df.list.string.count]), c("[items]","[alpha]","[LCI]","[UCI]","[CI width]","[Final trial sample Size]")))
      
      if (col.it.i==1) {
        
        mat.CBA[1,"[items]"]<-round(as.numeric(cba.temp[3]),3)
        mat.CBA[1,"[alpha]"]<-round(as.numeric(cba.temp[1]),3)
        mat.CBA[1,"[LCI]"]<-round(as.numeric(cba.temp$ci[1]),3)
        mat.CBA[1,"[UCI]"]<-round(as.numeric(cba.temp$ci[2]),3)
        mat.CBA[1,"[CI width]"]<-  mat.CBA[1,"[UCI]"]- mat.CBA[1,"[LCI]"]
        mat.CBA[1,"[Final trial sample Size]"]<-nrow(df.cba)-sum(is.na(df.cba[,cba.names[col.it.i]]))
        mat.CBA.int<-mat.CBA
        
      } else{
        mat.CBA[1,"[items]"]<-round(as.numeric(cba.temp[3]),3)
        mat.CBA[1,"[alpha]"]<-round(as.numeric(cba.temp[1]),3)
        mat.CBA[1,"[LCI]"]<-round(as.numeric(cba.temp$ci[1]),3)
        mat.CBA[1,"[UCI]"]<-round(as.numeric(cba.temp$ci[2]),3)
        mat.CBA[1,"[CI width]"]<-  mat.CBA[1,"[UCI]"]- mat.CBA[1,"[LCI]"]
        mat.CBA[1,"[Final trial sample Size]"]<-nrow(df.cba)-sum(is.na(df.cba[,cba.names[col.it.i]]))
        mat.CBA.int<-rbind(mat.CBA.int,mat.CBA)
      } #ifelse
      
      
    } #col.it.i
    
    
    save.name<-paste(df.list.string[df.list.string.count],outcome.group,"Cronbachalpha", sep="_")
    gnu.save(file = mat.CBA.int, filename = save.name)
    df.list.string.count<-df.list.string.count+1
    
    print("#######----------------------------------------------------#######")
    print("#######----------------------------------------------------#######")
    print("#######----------------------------------------------------#######")
    
    print(mat.CBA.int)
    print(plot(mat.CBA.int[,1], mat.CBA.int[,2], main = df.list.string[df.list.string.count]))
    print("#######----------------------------------------------------#######")
    print("#######----------------------------------------------------#######")
    print("#######----------------------------------------------------#######")
    
    
    
  }
  
  detach("package:ltm", unload = TRUE)
  
}
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## Loading required package: msm
## Loading required package: polycor
## [1] "Rows: 26"
## [1] "Cols: 6"
## File saved as: stroop_cronbach_cong_full_Cronbachalpha_2023-10-13.csv 
##  File saved in: C:/Users/mark/Documents/Current Projects/Reliability/update from clayton/Clayton analyses[1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
##                      [items] [alpha] [LCI] [UCI] [CI width]
## stroop_cronbach_cong       2   0.659 0.643 0.747      0.104
## stroop_cronbach_cong       3   0.717 0.649 0.765      0.116
## stroop_cronbach_cong       4   0.734 0.653 0.757      0.104
## stroop_cronbach_cong       5   0.758 0.760 0.803      0.043
## stroop_cronbach_cong       6   0.777 0.743 0.802      0.059
## stroop_cronbach_cong       7   0.811 0.787 0.810      0.023
## stroop_cronbach_cong       8   0.824 0.803 0.848      0.045
## stroop_cronbach_cong       9   0.840 0.831 0.844      0.013
## stroop_cronbach_cong      10   0.844 0.828 0.850      0.022
## stroop_cronbach_cong      11   0.854 0.829 0.888      0.059
## stroop_cronbach_cong      12   0.865 0.849 0.875      0.026
## stroop_cronbach_cong      13   0.874 0.850 0.885      0.035
## stroop_cronbach_cong      14   0.883 0.863 0.893      0.030
## stroop_cronbach_cong      15   0.891 0.877 0.912      0.035
## stroop_cronbach_cong      16   0.897 0.886 0.915      0.029
## stroop_cronbach_cong      17   0.902 0.898 0.917      0.019
## stroop_cronbach_cong      18   0.906 0.900 0.916      0.016
## stroop_cronbach_cong      19   0.910 0.899 0.912      0.013
## stroop_cronbach_cong      20   0.914 0.906 0.916      0.010
## stroop_cronbach_cong      21   0.918 0.907 0.932      0.025
## stroop_cronbach_cong      22   0.917 0.902 0.934      0.032
## stroop_cronbach_cong      23   0.915 0.904 0.927      0.023
## stroop_cronbach_cong      24   0.917 0.895 0.922      0.027
## stroop_cronbach_cong      25   0.914 0.901 0.924      0.023
## stroop_cronbach_cong      26   0.911 0.898 0.918      0.020
## stroop_cronbach_cong      27   0.909 0.897 0.913      0.016
##                      [Final trial sample Size]
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       277
## stroop_cronbach_cong                       275
## stroop_cronbach_cong                       274
## stroop_cronbach_cong                       273
## stroop_cronbach_cong                       271
## stroop_cronbach_cong                       267
## stroop_cronbach_cong                       264

## NULL
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "Rows: 8"
## [1] "Cols: 6"
## File saved as: stroop_cronbach_incong_full_Cronbachalpha_2023-10-13.csv 
##  File saved in: C:/Users/mark/Documents/Current Projects/Reliability/update from clayton/Clayton analyses[1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
##                        [items] [alpha] [LCI] [UCI] [CI width]
## stroop_cronbach_incong       2   0.585 0.419 0.643      0.224
## stroop_cronbach_incong       3   0.636 0.555 0.736      0.181
## stroop_cronbach_incong       4   0.692 0.661 0.741      0.080
## stroop_cronbach_incong       5   0.755 0.727 0.782      0.055
## stroop_cronbach_incong       6   0.791 0.760 0.834      0.074
## stroop_cronbach_incong       7   0.825 0.800 0.826      0.026
## stroop_cronbach_incong       8   0.831 0.798 0.846      0.048
## stroop_cronbach_incong       9   0.845 0.828 0.855      0.027
##                        [Final trial sample Size]
## stroop_cronbach_incong                       277
## stroop_cronbach_incong                       277
## stroop_cronbach_incong                       277
## stroop_cronbach_incong                       277
## stroop_cronbach_incong                       277
## stroop_cronbach_incong                       277
## stroop_cronbach_incong                       272
## stroop_cronbach_incong                       265

## NULL
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "Rows: 43"
## [1] "Cols: 6"
## File saved as: flanker_cronbach_cong_full_Cronbachalpha_2023-10-13.csv 
##  File saved in: C:/Users/mark/Documents/Current Projects/Reliability/update from clayton/Clayton analyses[1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
##                       [items] [alpha] [LCI] [UCI] [CI width]
## flanker_cronbach_cong       2   0.830 0.819 0.879      0.060
## flanker_cronbach_cong       3   0.898 0.872 0.907      0.035
## flanker_cronbach_cong       4   0.925 0.924 0.940      0.016
## flanker_cronbach_cong       5   0.938 0.934 0.945      0.011
## flanker_cronbach_cong       6   0.947 0.939 0.952      0.013
## flanker_cronbach_cong       7   0.949 0.939 0.950      0.011
## flanker_cronbach_cong       8   0.957 0.956 0.967      0.011
## flanker_cronbach_cong       9   0.952 0.928 0.968      0.040
## flanker_cronbach_cong      10   0.957 0.955 0.966      0.011
## flanker_cronbach_cong      11   0.961 0.956 0.974      0.018
## flanker_cronbach_cong      12   0.963 0.948 0.967      0.019
## flanker_cronbach_cong      13   0.966 0.952 0.967      0.015
## flanker_cronbach_cong      14   0.967 0.964 0.970      0.006
## flanker_cronbach_cong      15   0.970 0.962 0.975      0.013
## flanker_cronbach_cong      16   0.972 0.960 0.975      0.015
## flanker_cronbach_cong      17   0.974 0.969 0.976      0.007
## flanker_cronbach_cong      18   0.975 0.970 0.979      0.009
## flanker_cronbach_cong      19   0.977 0.966 0.982      0.016
## flanker_cronbach_cong      20   0.978 0.975 0.981      0.006
## flanker_cronbach_cong      21   0.979 0.972 0.980      0.008
## flanker_cronbach_cong      22   0.979 0.976 0.984      0.008
## flanker_cronbach_cong      23   0.980 0.970 0.981      0.011
## flanker_cronbach_cong      24   0.981 0.977 0.984      0.007
## flanker_cronbach_cong      25   0.981 0.977 0.985      0.008
## flanker_cronbach_cong      26   0.982 0.981 0.984      0.003
## flanker_cronbach_cong      27   0.982 0.981 0.985      0.004
## flanker_cronbach_cong      28   0.983 0.981 0.985      0.004
## flanker_cronbach_cong      29   0.984 0.984 0.986      0.002
## flanker_cronbach_cong      30   0.984 0.983 0.986      0.003
## flanker_cronbach_cong      31   0.985 0.982 0.987      0.005
## flanker_cronbach_cong      32   0.985 0.980 0.987      0.007
## flanker_cronbach_cong      33   0.986 0.984 0.988      0.004
## flanker_cronbach_cong      34   0.986 0.980 0.988      0.008
## flanker_cronbach_cong      35   0.987 0.982 0.989      0.007
## flanker_cronbach_cong      36   0.987 0.985 0.987      0.002
## flanker_cronbach_cong      37   0.987 0.987 0.989      0.002
## flanker_cronbach_cong      38   0.988 0.986 0.988      0.002
## flanker_cronbach_cong      39   0.988 0.987 0.990      0.003
## flanker_cronbach_cong      40   0.988 0.986 0.989      0.003
## flanker_cronbach_cong      41   0.989 0.987 0.990      0.003
## flanker_cronbach_cong      42   0.989 0.987 0.990      0.003
## flanker_cronbach_cong      43   0.989 0.988 0.990      0.002
## flanker_cronbach_cong      44   0.989 0.988 0.991      0.003
##                       [Final trial sample Size]
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       364
## flanker_cronbach_cong                       362

## NULL
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "Rows: 42"
## [1] "Cols: 6"
## File saved as: flanker_cronbach_incong_full_Cronbachalpha_2023-10-13.csv 
##  File saved in: C:/Users/mark/Documents/Current Projects/Reliability/update from clayton/Clayton analyses[1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
##                         [items] [alpha] [LCI] [UCI] [CI width]
## flanker_cronbach_incong       2   0.896 0.866 0.930      0.064
## flanker_cronbach_incong       3   0.916 0.880 0.935      0.055
## flanker_cronbach_incong       4   0.938 0.913 0.947      0.034
## flanker_cronbach_incong       5   0.948 0.940 0.960      0.020
## flanker_cronbach_incong       6   0.954 0.951 0.961      0.010
## flanker_cronbach_incong       7   0.958 0.955 0.963      0.008
## flanker_cronbach_incong       8   0.963 0.960 0.968      0.008
## flanker_cronbach_incong       9   0.966 0.958 0.969      0.011
## flanker_cronbach_incong      10   0.969 0.967 0.971      0.004
## flanker_cronbach_incong      11   0.971 0.968 0.973      0.005
## flanker_cronbach_incong      12   0.971 0.965 0.974      0.009
## flanker_cronbach_incong      13   0.972 0.970 0.974      0.004
## flanker_cronbach_incong      14   0.974 0.973 0.977      0.004
## flanker_cronbach_incong      15   0.976 0.970 0.980      0.010
## flanker_cronbach_incong      16   0.977 0.973 0.978      0.005
## flanker_cronbach_incong      17   0.978 0.975 0.979      0.004
## flanker_cronbach_incong      18   0.979 0.978 0.980      0.002
## flanker_cronbach_incong      19   0.980 0.978 0.981      0.003
## flanker_cronbach_incong      20   0.981 0.980 0.982      0.002
## flanker_cronbach_incong      21   0.981 0.980 0.983      0.003
## flanker_cronbach_incong      22   0.981 0.979 0.982      0.003
## flanker_cronbach_incong      23   0.982 0.978 0.985      0.007
## flanker_cronbach_incong      24   0.982 0.980 0.984      0.004
## flanker_cronbach_incong      25   0.983 0.981 0.984      0.003
## flanker_cronbach_incong      26   0.983 0.981 0.985      0.004
## flanker_cronbach_incong      27   0.984 0.980 0.984      0.004
## flanker_cronbach_incong      28   0.984 0.981 0.986      0.005
## flanker_cronbach_incong      29   0.985 0.985 0.987      0.002
## flanker_cronbach_incong      30   0.985 0.984 0.986      0.002
## flanker_cronbach_incong      31   0.986 0.986 0.987      0.001
## flanker_cronbach_incong      32   0.986 0.987 0.989      0.002
## flanker_cronbach_incong      33   0.987 0.985 0.988      0.003
## flanker_cronbach_incong      34   0.987 0.986 0.989      0.003
## flanker_cronbach_incong      35   0.988 0.985 0.989      0.004
## flanker_cronbach_incong      36   0.988 0.985 0.988      0.003
## flanker_cronbach_incong      37   0.988 0.986 0.989      0.003
## flanker_cronbach_incong      38   0.989 0.987 0.989      0.002
## flanker_cronbach_incong      39   0.989 0.989 0.990      0.001
## flanker_cronbach_incong      40   0.989 0.987 0.990      0.003
## flanker_cronbach_incong      41   0.989 0.987 0.990      0.003
## flanker_cronbach_incong      42   0.990 0.988 0.991      0.003
## flanker_cronbach_incong      43   0.990 0.989 0.991      0.002
##                         [Final trial sample Size]
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364
## flanker_cronbach_incong                       364

## NULL
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "Rows: 71"
## [1] "Cols: 6"
## File saved as: gonogo_cronbach_go_full_Cronbachalpha_2023-10-13.csv 
##  File saved in: C:/Users/mark/Documents/Current Projects/Reliability/update from clayton/Clayton analyses[1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
##                    [items] [alpha] [LCI] [UCI] [CI width]
## gonogo_cronbach_go       2   0.807 0.747 0.816      0.069
## gonogo_cronbach_go       3   0.857 0.841 0.867      0.026
## gonogo_cronbach_go       4   0.090 0.032 0.813      0.781
## gonogo_cronbach_go       5   0.157 0.104 0.921      0.817
## gonogo_cronbach_go       6   0.221 0.124 0.935      0.811
## gonogo_cronbach_go       7   0.281 0.195 0.942      0.747
## gonogo_cronbach_go       8   0.319 0.220 0.956      0.736
## gonogo_cronbach_go       9   0.360 0.423 0.960      0.537
## gonogo_cronbach_go      10   0.402 0.309 0.960      0.651
## gonogo_cronbach_go      11   0.439 0.300 0.962      0.662
## gonogo_cronbach_go      12   0.470 0.346 0.966      0.620
## gonogo_cronbach_go      13   0.506 0.473 0.970      0.497
## gonogo_cronbach_go      14   0.539 0.498 0.970      0.472
## gonogo_cronbach_go      15   0.571 0.394 0.969      0.575
## gonogo_cronbach_go      16   0.600 0.409 0.630      0.221
## gonogo_cronbach_go      17   0.628 0.500 0.975      0.475
## gonogo_cronbach_go      18   0.652 0.365 0.947      0.582
## gonogo_cronbach_go      19   0.676 0.460 0.948      0.488
## gonogo_cronbach_go      20   0.698 0.477 0.979      0.502
## gonogo_cronbach_go      21   0.716 0.710 0.981      0.271
## gonogo_cronbach_go      22   0.734 0.484 0.957      0.473
## gonogo_cronbach_go      23   0.750 0.601 0.962      0.361
## gonogo_cronbach_go      24   0.763 0.747 0.960      0.213
## gonogo_cronbach_go      25   0.776 0.675 0.962      0.287
## gonogo_cronbach_go      26   0.785 0.662 0.985      0.323
## gonogo_cronbach_go      27   0.795 0.575 0.810      0.235
## gonogo_cronbach_go      28   0.804 0.677 0.982      0.305
## gonogo_cronbach_go      29   0.814 0.695 0.983      0.288
## gonogo_cronbach_go      30   0.822 0.662 0.970      0.308
## gonogo_cronbach_go      31   0.830 0.736 0.970      0.234
## gonogo_cronbach_go      32   0.836 0.756 0.971      0.215
## gonogo_cronbach_go      33   0.843 0.666 0.969      0.303
## gonogo_cronbach_go      34   0.850 0.846 0.967      0.121
## gonogo_cronbach_go      35   0.855 0.845 0.986      0.141
## gonogo_cronbach_go      36   0.861 0.619 0.985      0.366
## gonogo_cronbach_go      37   0.866 0.867 0.988      0.121
## gonogo_cronbach_go      38   0.871 0.803 0.988      0.185
## gonogo_cronbach_go      39   0.876 0.811 0.988      0.177
## gonogo_cronbach_go      40   0.880 0.787 0.987      0.200
## gonogo_cronbach_go      41   0.883 0.741 0.987      0.246
## gonogo_cronbach_go      42   0.887 0.754 0.985      0.231
## gonogo_cronbach_go      43   0.891 0.828 0.987      0.159
## gonogo_cronbach_go      44   0.894 0.703 0.900      0.197
## gonogo_cronbach_go      45   0.898 0.813 0.987      0.174
## gonogo_cronbach_go      46   0.901 0.781 0.989      0.208
## gonogo_cronbach_go      47   0.904 0.815 0.980      0.165
## gonogo_cronbach_go      48   0.907 0.859 0.989      0.130
## gonogo_cronbach_go      49   0.910 0.860 0.990      0.130
## gonogo_cronbach_go      50   0.913 0.921 0.989      0.068
## gonogo_cronbach_go      51   0.915 0.869 0.980      0.111
## gonogo_cronbach_go      52   0.918 0.840 0.988      0.148
## gonogo_cronbach_go      53   0.920 0.874 0.984      0.110
## gonogo_cronbach_go      54   0.923 0.798 0.980      0.182
## gonogo_cronbach_go      55   0.925 0.846 0.984      0.138
## gonogo_cronbach_go      56   0.927 0.835 0.928      0.093
## gonogo_cronbach_go      57   0.929 0.930 0.991      0.061
## gonogo_cronbach_go      58   0.931 0.924 0.990      0.066
## gonogo_cronbach_go      59   0.933 0.835 0.985      0.150
## gonogo_cronbach_go      60   0.935 0.927 0.992      0.065
## gonogo_cronbach_go      61   0.936 0.933 0.991      0.058
## gonogo_cronbach_go      62   0.938 0.884 0.991      0.107
## gonogo_cronbach_go      63   0.940 0.837 0.944      0.107
## gonogo_cronbach_go      64   0.941 0.892 0.991      0.099
## gonogo_cronbach_go      65   0.943 0.942 0.991      0.049
## gonogo_cronbach_go      66   0.944 0.865 0.939      0.074
## gonogo_cronbach_go      67   0.946 0.940 0.954      0.014
## gonogo_cronbach_go      68   0.947 0.873 0.987      0.114
## gonogo_cronbach_go      69   0.948 0.951 0.994      0.043
## gonogo_cronbach_go      70   0.949 0.912 0.993      0.081
## gonogo_cronbach_go      71   0.950 0.903 0.993      0.090
## gonogo_cronbach_go      72   0.952 0.953 0.993      0.040
##                    [Final trial sample Size]
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       334
## gonogo_cronbach_go                       333
## gonogo_cronbach_go                       331
## gonogo_cronbach_go                       331
## gonogo_cronbach_go                       323

## NULL
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "Rows: 7"
## [1] "Cols: 6"
## File saved as: gonogo_cronbach_nogo_full_Cronbachalpha_2023-10-13.csv 
##  File saved in: C:/Users/mark/Documents/Current Projects/Reliability/update from clayton/Clayton analyses[1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
##                      [items] [alpha] [LCI] [UCI] [CI width]
## gonogo_cronbach_nogo       2   0.297 0.305 0.458      0.153
## gonogo_cronbach_nogo       3   0.381 0.317 0.474      0.157
## gonogo_cronbach_nogo       4   0.435 0.381 0.470      0.089
## gonogo_cronbach_nogo       5   0.495 0.426 0.587      0.161
## gonogo_cronbach_nogo       6   0.544 0.471 0.543      0.072
## gonogo_cronbach_nogo       7   0.557 0.474 0.561      0.087
## gonogo_cronbach_nogo       8   0.599 0.561 0.632      0.071
##                      [Final trial sample Size]
## gonogo_cronbach_nogo                       334
## gonogo_cronbach_nogo                       334
## gonogo_cronbach_nogo                       334
## gonogo_cronbach_nogo                       334
## gonogo_cronbach_nogo                       334
## gonogo_cronbach_nogo                       333
## gonogo_cronbach_nogo                       325

## NULL
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "Rows: 30"
## [1] "Cols: 6"
## File saved as: humi_cronbach_full_Cronbachalpha_2023-10-13.csv 
##  File saved in: C:/Users/mark/Documents/Current Projects/Reliability/update from clayton/Clayton analyses[1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
##               [items] [alpha] [LCI] [UCI] [CI width] [Final trial sample Size]
## humi_cronbach       2   0.720 0.679 0.793      0.114                       358
## humi_cronbach       3   0.439 0.386 0.505      0.119                       358
## humi_cronbach       4   0.538 0.491 0.562      0.071                       358
## humi_cronbach       5   0.613 0.547 0.653      0.106                       358
## humi_cronbach       6   0.668 0.621 0.683      0.062                       358
## humi_cronbach       7   0.645 0.590 0.678      0.088                       358
## humi_cronbach       8   0.640 0.623 0.684      0.061                       358
## humi_cronbach       9   0.643 0.618 0.672      0.054                       358
## humi_cronbach      10   0.659 0.640 0.693      0.053                       358
## humi_cronbach      11   0.684 0.683 0.719      0.036                       358
## humi_cronbach      12   0.688 0.644 0.686      0.042                       358
## humi_cronbach      13   0.686 0.658 0.692      0.034                       358
## humi_cronbach      14   0.688 0.662 0.679      0.017                       358
## humi_cronbach      15   0.693 0.654 0.727      0.073                       358
## humi_cronbach      16   0.690 0.653 0.700      0.047                       358
## humi_cronbach      17   0.697 0.652 0.736      0.084                       358
## humi_cronbach      18   0.697 0.656 0.701      0.045                       357
## humi_cronbach      19   0.697 0.673 0.741      0.068                       357
## humi_cronbach      20   0.703 0.706 0.756      0.050                       357
## humi_cronbach      21   0.712 0.675 0.736      0.061                       356
## humi_cronbach      22   0.716 0.687 0.733      0.046                       356
## humi_cronbach      23   0.717 0.708 0.758      0.050                       356
## humi_cronbach      24   0.687 0.654 0.722      0.068                       353
## humi_cronbach      25   0.684 0.632 0.701      0.069                       353
## humi_cronbach      26   0.686 0.663 0.742      0.079                       353
## humi_cronbach      27   0.667 0.628 0.695      0.067                       351
## humi_cronbach      28   0.669 0.645 0.724      0.079                       351
## humi_cronbach      29   0.665 0.630 0.662      0.032                       350
## humi_cronbach      30   0.619 0.572 0.622      0.050                       346
## humi_cronbach      31   0.622 0.542 0.667      0.125                       344

## NULL
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "Rows: 87"
## [1] "Cols: 6"
## File saved as: nback_cronbach_full_Cronbachalpha_2023-10-13.csv 
##  File saved in: C:/Users/mark/Documents/Current Projects/Reliability/update from clayton/Clayton analyses[1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
##                [items] [alpha] [LCI] [UCI] [CI width] [Final trial sample Size]
## nback_cronbach       2   0.616 0.553 0.762      0.209                       269
## nback_cronbach       3   0.420 0.266 0.476      0.210                       269
## nback_cronbach       4   0.543 0.481 0.543      0.062                       269
## nback_cronbach       5   0.586 0.494 0.645      0.151                       269
## nback_cronbach       6   0.587 0.536 0.669      0.133                       269
## nback_cronbach       7   0.598 0.530 0.620      0.090                       269
## nback_cronbach       8   0.617 0.550 0.672      0.122                       269
## nback_cronbach       9   0.626 0.561 0.653      0.092                       269
## nback_cronbach      10   0.642 0.610 0.689      0.079                       269
## nback_cronbach      11   0.660 0.643 0.713      0.070                       269
## nback_cronbach      12   0.652 0.612 0.669      0.057                       269
## nback_cronbach      13   0.668 0.642 0.699      0.057                       269
## nback_cronbach      14   0.685 0.677 0.722      0.045                       269
## nback_cronbach      15   0.695 0.656 0.729      0.073                       269
## nback_cronbach      16   0.715 0.656 0.716      0.060                       269
## nback_cronbach      17   0.732 0.704 0.780      0.076                       269
## nback_cronbach      18   0.739 0.700 0.784      0.084                       269
## nback_cronbach      19   0.749 0.726 0.755      0.029                       269
## nback_cronbach      20   0.763 0.728 0.803      0.075                       269
## nback_cronbach      21   0.777 0.742 0.811      0.069                       269
## nback_cronbach      22   0.779 0.766 0.810      0.044                       269
## nback_cronbach      23   0.787 0.782 0.820      0.038                       269
## nback_cronbach      24   0.791 0.789 0.816      0.027                       269
## nback_cronbach      25   0.802 0.761 0.812      0.051                       269
## nback_cronbach      26   0.810 0.778 0.837      0.059                       269
## nback_cronbach      27   0.814 0.797 0.834      0.037                       269
## nback_cronbach      28   0.823 0.808 0.845      0.037                       269
## nback_cronbach      29   0.831 0.807 0.841      0.034                       269
## nback_cronbach      30   0.839 0.822 0.853      0.031                       269
## nback_cronbach      31   0.842 0.836 0.858      0.022                       269
## nback_cronbach      32   0.846 0.799 0.863      0.064                       269
## nback_cronbach      33   0.849 0.835 0.880      0.045                       269
## nback_cronbach      34   0.855 0.851 0.858      0.007                       269
## nback_cronbach      35   0.861 0.842 0.881      0.039                       269
## nback_cronbach      36   0.862 0.841 0.881      0.040                       269
## nback_cronbach      37   0.864 0.837 0.881      0.044                       269
## nback_cronbach      38   0.867 0.845 0.874      0.029                       269
## nback_cronbach      39   0.869 0.859 0.883      0.024                       269
## nback_cronbach      40   0.873 0.849 0.877      0.028                       269
## nback_cronbach      41   0.876 0.864 0.884      0.020                       269
## nback_cronbach      42   0.877 0.858 0.884      0.026                       269
## nback_cronbach      43   0.880 0.866 0.891      0.025                       269
## nback_cronbach      44   0.883 0.863 0.894      0.031                       269
## nback_cronbach      45   0.884 0.872 0.898      0.026                       269
## nback_cronbach      46   0.888 0.857 0.893      0.036                       269
## nback_cronbach      47   0.889 0.875 0.909      0.034                       269
## nback_cronbach      48   0.892 0.872 0.897      0.025                       269
## nback_cronbach      49   0.894 0.877 0.904      0.027                       269
## nback_cronbach      50   0.896 0.899 0.904      0.005                       269
## nback_cronbach      51   0.898 0.886 0.907      0.021                       269
## nback_cronbach      52   0.899 0.885 0.902      0.017                       269
## nback_cronbach      53   0.901 0.882 0.909      0.027                       269
## nback_cronbach      54   0.902 0.880 0.918      0.038                       269
## nback_cronbach      55   0.904 0.903 0.920      0.017                       269
## nback_cronbach      56   0.904 0.891 0.919      0.028                       269
## nback_cronbach      57   0.906 0.905 0.910      0.005                       269
## nback_cronbach      58   0.906 0.891 0.913      0.022                       269
## nback_cronbach      59   0.909 0.884 0.906      0.022                       269
## nback_cronbach      60   0.910 0.891 0.922      0.031                       269
## nback_cronbach      61   0.912 0.901 0.926      0.025                       269
## nback_cronbach      62   0.913 0.902 0.916      0.014                       269
## nback_cronbach      63   0.914 0.905 0.927      0.022                       269
## nback_cronbach      64   0.916 0.904 0.920      0.016                       269
## nback_cronbach      65   0.917 0.898 0.920      0.022                       269
## nback_cronbach      66   0.917 0.902 0.935      0.033                       269
## nback_cronbach      67   0.918 0.910 0.931      0.021                       269
## nback_cronbach      68   0.919 0.894 0.930      0.036                       269
## nback_cronbach      69   0.920 0.904 0.931      0.027                       269
## nback_cronbach      70   0.921 0.915 0.933      0.018                       269
## nback_cronbach      71   0.922 0.913 0.925      0.012                       269
## nback_cronbach      72   0.922 0.923 0.933      0.010                       269
## nback_cronbach      73   0.923 0.921 0.929      0.008                       269
## nback_cronbach      74   0.924 0.917 0.935      0.018                       269
## nback_cronbach      75   0.922 0.911 0.933      0.022                       268
## nback_cronbach      76   0.922 0.920 0.930      0.010                       268
## nback_cronbach      77   0.923 0.891 0.932      0.041                       268
## nback_cronbach      78   0.921 0.920 0.930      0.010                       267
## nback_cronbach      79   0.920 0.914 0.925      0.011                       266
## nback_cronbach      80   0.918 0.904 0.928      0.024                       265
## nback_cronbach      81   0.916 0.901 0.920      0.019                       264
## nback_cronbach      82   0.917 0.915 0.926      0.011                       264
## nback_cronbach      83   0.918 0.912 0.928      0.016                       264
## nback_cronbach      84   0.919 0.907 0.922      0.015                       264
## nback_cronbach      85   0.918 0.907 0.924      0.017                       263
## nback_cronbach      86   0.915 0.905 0.928      0.023                       261
## nback_cronbach      87   0.916 0.912 0.923      0.011                       260
## nback_cronbach      88   0.916 0.900 0.921      0.021                       256

## NULL
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "Rows: 35"
## [1] "Cols: 6"
## File saved as: card_cronbach_full_Cronbachalpha_2023-10-13.csv 
##  File saved in: C:/Users/mark/Documents/Current Projects/Reliability/update from clayton/Clayton analyses[1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
##               [items] [alpha] [LCI] [UCI] [CI width] [Final trial sample Size]
## card_cronbach       2   0.642 0.542 0.810      0.268                       281
## card_cronbach       3   0.773 0.657 0.810      0.153                       281
## card_cronbach       4   0.814 0.795 0.832      0.037                       281
## card_cronbach       5   0.847 0.829 0.896      0.067                       281
## card_cronbach       6   0.647 0.536 0.651      0.115                       281
## card_cronbach       7   0.638 0.601 0.673      0.072                       281
## card_cronbach       8   0.671 0.600 0.690      0.090                       281
## card_cronbach       9   0.713 0.691 0.762      0.071                       281
## card_cronbach      10   0.750 0.747 0.786      0.039                       281
## card_cronbach      11   0.780 0.763 0.814      0.051                       281
## card_cronbach      12   0.784 0.771 0.818      0.047                       281
## card_cronbach      13   0.782 0.741 0.801      0.060                       281
## card_cronbach      14   0.779 0.748 0.788      0.040                       281
## card_cronbach      15   0.786 0.768 0.809      0.041                       281
## card_cronbach      16   0.804 0.797 0.822      0.025                       281
## card_cronbach      17   0.817 0.789 0.833      0.044                       281
## card_cronbach      18   0.826 0.803 0.851      0.048                       281
## card_cronbach      19   0.835 0.812 0.833      0.021                       281
## card_cronbach      20   0.844 0.812 0.849      0.037                       281
## card_cronbach      21   0.851 0.835 0.865      0.030                       281
## card_cronbach      22   0.858 0.842 0.882      0.040                       281
## card_cronbach      23   0.866 0.847 0.875      0.028                       281
## card_cronbach      24   0.872 0.868 0.889      0.021                       281
## card_cronbach      25   0.878 0.868 0.889      0.021                       281
## card_cronbach      26   0.882 0.881 0.888      0.007                       281
## card_cronbach      27   0.888 0.869 0.898      0.029                       281
## card_cronbach      28   0.893 0.890 0.902      0.012                       281
## card_cronbach      29   0.897 0.891 0.905      0.014                       281
## card_cronbach      30   0.900 0.893 0.897      0.004                       281
## card_cronbach      31   0.904 0.889 0.905      0.016                       281
## card_cronbach      32   0.908 0.890 0.920      0.030                       281
## card_cronbach      33   0.911 0.894 0.920      0.026                       281
## card_cronbach      34   0.914 0.908 0.920      0.012                       281
## card_cronbach      35   0.917 0.917 0.926      0.009                       281
## card_cronbach      36   0.919 0.918 0.923      0.005                       274

## NULL
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"
## [1] "#######----------------------------------------------------#######"