getwd()
## [1] "C:/Users/YSELoaner/Desktop"
A<-read.csv("D:/oct2023/All initial data set.csv")

##1ST STEP_DATA CLEANING

Format variables name

A2<-clean_names(A)

remove empty rows and column

A3<-remove_empty(A2, which = c (“rows”,“cols”), quiet = FALSE)

Duplicate rows remove

A4<-distinct(A3)

remove Na

A5<-na.omit(A4)

##AVERAGE & CALCULATE SLA, LDMC

A5\(FW <- (A5\)fw1 + A5\(fw2 + A5\)fw3 + A5\(fw4 + A5\)fw5) / 5

dw1,.. & la1,… covert to non numeric

A5\(dw1<-as.numeric(A5\)dw1)

A5\(dw2<-as.numeric(A5\)dw2)

A5\(dw3<-as.numeric(A5\)dw3)

A5\(dw4<-as.numeric(A5\)dw4)

A5\(dw5<-as.numeric(A5\)dw5)

A5\(DW <- (A5\)dw1 + A5\(dw2 + A5\)dw3 + A5\(dw4 + A5\)dw5) / 5

A5\(LT <- (A5\)lt1 + A5\(lt2 + A5\)lt3 + A5\(lt4 + A5\)lt5) / 5

A5\(LA <- (A5\)la1 + A5\(la2 + A5\)la3 + A5\(la4 + A5\)la5) / 5

A5\(la1<-as.numeric(A5\)la1)

A5\(la2<-as.numeric(A5\)la2)

A5\(la3<-as.numeric(A5\)la3)

A5\(la4<-as.numeric(A5\)la4)

A5\(la5<-as.numeric(A5\)la5)

###A5\(SLA <- (A5\)LA / A5$DW )

###A5\(LDMC<-(A5\)DW/A5$FW)

Save data frame A5 as a CSV file

write.csv(A5, file = “D:/oct2023/average.csv”, row.names = FALSE)

select sp,SLA,LT,LA,LDMC

A6<-select(sp,SLA,LA,LT,LDMC)

Remove outliers FROM SLA

remove_outliers <- function(A6, SLA) { Q1 <- quantile(A6[[SLA]], 0.25, na.rm = TRUE) Q3 <- quantile(A6[[SLA]], 0.75, na.rm = TRUE) IQR_value <- Q3 - Q1 lower_bound <- Q1 - 1.5 * IQR_value upper_bound <- Q3 + 1.5 * IQR_value data_no_outliers <- A6[A6[[SLA]] >= lower_bound & A6[[SLA]] <= upper_bound, ] return(data_no_outliers) }

A6_cleaned <- remove_outliers(A6, “SLA”)

LA

remove_outliers <- function(A6, LA) { Q1 <- quantile(A6[[LA]], 0.25, na.rm = TRUE) Q3 <- quantile(A6[[LA]], 0.75, na.rm = TRUE) IQR_value <- Q3 - Q1 lower_bound <- Q1 - 1.5 * IQR_value upper_bound <- Q3 + 1.5 * IQR_value data_no_outliers <- A6[A6[[LA]] >= lower_bound & A6[[LA]] <= upper_bound, ] return(data_no_outliers) }

A6_cleanedLA <- remove_outliers(A6, “LA”)

LT

remove_outliers <- function(A6, LT) { Q1 <- quantile(A6[[LT]], 0.25, na.rm = TRUE) Q3 <- quantile(A6[[LT]], 0.75, na.rm = TRUE) IQR_value <- Q3 - Q1 lower_bound <- Q1 - 1.5 * IQR_value upper_bound <- Q3 + 1.5 * IQR_value data_no_outliers <- A6[A6[[LT]] >= lower_bound & A6[[LT]] <= upper_bound, ] return(data_no_outliers) }

A6_cleanedLT <- remove_outliers(A6, “LT”)

LDMC

remove_outliers <- function(A6, LDMC) { Q1 <- quantile(A6[[LDMC]], 0.25, na.rm = TRUE) Q3 <- quantile(A6[[LDMC]], 0.75, na.rm = TRUE) IQR_value <- Q3 - Q1 lower_bound <- Q1 - 1.5 * IQR_value upper_bound <- Q3 + 1.5 * IQR_value data_no_outliers <- A6[A6[[LDMC]] >= lower_bound & A6[[LDMC]] <= upper_bound, ] return(data_no_outliers) }

A6_cleanedLDMC <- remove_outliers(A6, “LDMC”)

Save file Each files each column outliers are removed

write.csv(A6_cleaned, file = “D:/oct2023/Cleane_sla.csv”, row.names = FALSE) write.csv(A6_cleanedLA, file = “D:/oct2023/Cleane_la.csv”, row.names = FALSE) write.csv(A6_cleanedLT, file = “D:/oct2023/Cleane_lt.csv”, row.names = FALSE) write.csv(A6_cleanedLDMC, file = “D:/oct2023/Cleane_ldmc.csv”, row.names = FALSE)

According outliers removin data (range of each traits)

SLA = 32.09648-241.3107 LA = 8.5328-183.8428 LT = 0.0844-0.3372 LDMC=0.15247-0.643027

A6_cleanedSLA<-read.csv("D:/oct2023/Cleane_sla.csv")
A6_cleanedLA<-read.csv("D:/oct2023/Cleane_la.csv")
A6_cleanedLT<-read.csv("D:/oct2023/Cleane_lt.csv")
A6_cleanedLDMC<-read.csv("D:/oct2023/Cleane_ldmc.csv")
A6<-read.csv("D:/oct2023/clean_average.csv")

Descriptive statistics(all data)

summary(A6$SLA)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max.      NA's 
##    0.4631  109.7685  140.5328  150.8865  164.0677 2117.9079         8
summary(A6$LA)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
##    8.533   29.588   52.746   74.838   91.564 6074.160        7
summary(A6$LT)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0844  0.1696  0.1990  0.2778  0.2368 35.9388
summary(A6$LDMC)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
##  0.00237  0.31850  0.39540  0.59953  0.45054 82.05165        1
boxplot(A6$SLA, main="Boxplot of SLA", xlab="SLA Values", horizontal=TRUE)

boxplot(A6$LA, main="Boxplot of LA", xlab="LA Values", horizontal=TRUE)

boxplot(A6$LT, main="Boxplot of LT", xlab="LT Values", horizontal=TRUE)

boxplot(A6$LDMC, main="Boxplot of LDMC", xlab="LDMC Values", horizontal=TRUE)

Descriptive statistics(after removing outliers)

summary(A6_cleanedSLA$SLA)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    32.1   110.1   139.0   137.0   160.9   241.3       8
boxplot(A6_cleanedSLA$SLA, main="Boxplot of SLA", xlab="SLA Values", horizontal=TRUE)

LEAF SIZE

summary(A6_cleanedLA$LA)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   8.533  28.111  49.607  59.783  83.345 183.843       7
boxplot(A6_cleanedLA$LA, main="Boxplot of LA", xlab="LA Values", horizontal=TRUE)

summary(A6_cleanedLT$LT)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0844  0.1665  0.1924  0.2003  0.2243  0.3372
boxplot(A6_cleanedLT$LT, main="Boxplot of LT", xlab="LT Values", horizontal=TRUE)

summary(A6_cleanedLDMC$LDMC)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##  0.1524  0.3185  0.3934  0.3873  0.4471  0.6430       1
boxplot(A6_cleanedLDMC$LDMC, main="Boxplot of LDMC", xlab="LDMC Values", horizontal=TRUE)

result <- tapply(A6_cleanedSLA$SLA,A6_cleanedSLA$sp, mean)
print(result)
##    ANISCI    BHESCE    CALOTH    CRYPWI    CULLCE    CULLRO    DIOSAC    DIOSHI 
## 153.59860 174.94582 125.74018  99.35112 150.35628 106.16789 158.43355 111.98432 
##    GARCHE    HOPEJU    HUMBLA    HYDNOC    LITSLO    MANGZE    MASTTE    MESUFE 
##  99.27585 140.27534 145.20874 125.65261 116.87689 124.62553 159.15809 102.80868 
##    MESUNA    MYRIDA    PALACA    PALAPE    PALATH    SEMEGA    SEMEWA    SHORAF 
## 148.79173 116.39390 135.13369 167.83573 154.35482  82.89166 106.07374 155.74026 
##    SHORCN    SHORCR    SHORDI    SHORME    SHORST    SHORTR    SHORWO    SYZYNE 
## 141.28650 140.42032 115.19562  97.97234 121.03768 160.17615 139.28058 127.58933 
##    SYZYSP    SYZYWI    XYLOCH 
##  84.11494 186.29410 191.65213
std_dev <- aggregate(SLA ~ sp, data =A6_cleanedSLA , FUN = sd)

# Calculate standard error for each species (standard deviation divided by the square root of the number of observations)
std_error <- std_dev$SLA/ sqrt(table(A6_cleanedSLA$sp))

# Calculate coefficient of variation (CV) for each species (standard deviation divided by the mean)
cv <- std_dev$SLA / aggregate(SLA ~ sp, data = A6_cleanedSLA, FUN = mean)$SLA

# Calculate the mean for each species
mean_value <- aggregate(SLA ~ sp, data = A6_cleanedSLA, FUN = mean)
# Create a new data frame with the results
resultSLA <- data.frame(
  Species = std_dev$sp,
   MeanValue = mean_value$SLA,
  StandardDeviation = std_dev$SLA,
  StandardError = std_error,
  CoefficientOfVariation = cv
)

print(resultSLA)
##    Species MeanValue StandardDeviation StandardError.Var1 StandardError.Freq
## 1   ANISCI 153.59860         27.482637             ANISCI           3.926091
## 2   BHESCE 174.94582         39.558860             BHESCE           8.074919
## 3   CALOTH 125.74018         15.089686             CALOTH           3.772421
## 4   CRYPWI  99.35112          8.443645             CRYPWI           2.047885
## 5   CULLCE 150.35628         23.399608             CULLCE           3.046370
## 6   CULLRO 106.16789         15.135455             CULLRO           2.308135
## 7   DIOSAC 158.43355         17.066824             DIOSAC           3.483751
## 8   DIOSHI 111.98432         36.714487             DIOSHI          10.182767
## 9   GARCHE  99.27585         14.015354             GARCHE           1.856379
## 10  HOPEJU 140.27534         23.965925             HOPEJU           5.991481
## 11  HUMBLA 145.20874         18.146482             HUMBLA           3.558818
## 12  HYDNOC 125.65261         27.068876             HYDNOC           7.507555
## 13  LITSLO 116.87689         21.502891             LITSLO           5.963829
## 14  MANGZE 124.62553         19.573682             MANGZE           5.053903
## 15  MASTTE 159.15809         14.315162             MASTTE           3.471937
## 16  MESUFE 102.80868         25.011195             MESUFE           3.573028
## 17  MESUNA 148.79173         29.206752             MESUNA           3.974536
## 18  MYRIDA 116.39390         25.837053             MYRIDA           3.986744
## 19  PALACA 135.13369         22.939893             PALACA           4.120126
## 20  PALAPE 167.83573         19.856668             PALAPE           2.630080
## 21  PALATH 154.35482         15.272468             PALATH           2.699816
## 22  SEMEGA  82.89166         53.809780             SEMEGA          14.381269
## 23  SEMEWA 106.07374         20.011810             SEMEWA           4.716829
## 24  SHORAF 155.74026         29.119255             SHORAF           4.340842
## 25  SHORCN 141.28650         32.686447             SHORCN          10.336362
## 26  SHORCR 140.42032         34.185926             SHORCR           5.096137
## 27  SHORDI 115.19562         27.438399             SHORDI           4.510845
## 28  SHORME  97.97234         10.186015             SHORME           2.940449
## 29  SHORST 121.03768         44.979135             SHORST           6.560881
## 30  SHORTR 160.17615         10.647943             SHORTR           1.912427
## 31  SHORWO 139.28058         26.051446             SHORWO           4.678978
## 32  SYZYNE 127.58933         28.223334             SYZYNE           7.543003
## 33  SYZYSP  84.11494         12.308182             SYZYSP           4.652056
## 34  SYZYWI 186.29410         31.901924             SYZYWI          14.266974
## 35  XYLOCH 191.65213         26.524108             XYLOCH           3.576510
##    CoefficientOfVariation
## 1              0.17892505
## 2              0.22612063
## 3              0.12000687
## 4              0.08498792
## 5              0.15562774
## 6              0.14256151
## 7              0.10772229
## 8              0.32785381
## 9              0.14117587
## 10             0.17084917
## 11             0.12496825
## 12             0.21542629
## 13             0.18397898
## 14             0.15705997
## 15             0.08994304
## 16             0.24327902
## 17             0.19629284
## 18             0.22197945
## 19             0.16975702
## 20             0.11831013
## 21             0.09894391
## 22             0.64915791
## 23             0.18865941
## 24             0.18697320
## 25             0.23134870
## 26             0.24345426
## 27             0.23818960
## 28             0.10396828
## 29             0.37161266
## 30             0.06647646
## 31             0.18704291
## 32             0.22120450
## 33             0.14632575
## 34             0.17124495
## 35             0.13839715

save in csv file

write.csv(resultSLA, file = "D:/oct2023/decritive SLA1.csv", row.names = FALSE)

LT

std_dev <- aggregate(LA ~ sp, data =A6_cleanedLA , FUN = sd)

std_error <- std_dev$LA/ sqrt(table(A6_cleanedLA$sp))

cv <- std_dev$LA / aggregate(LA ~ sp, data = A6_cleanedLA, FUN = mean)$LA

mean_value <- aggregate(LA ~ sp, data = A6_cleanedLA, FUN = mean)

resultLA <- data.frame(
  Species = std_dev$sp,
   MeanValue = mean_value$LA,
  StandardDeviation = std_dev$LA,
  StandardError = std_error,
  CoefficientOfVariation = cv
)

print(resultLA)
##    Species MeanValue StandardDeviation StandardError.Var1 StandardError.Freq
## 1   ANISCI  45.60805         19.078928             ANISCI          2.6715843
## 2   BHESCE  82.05314         25.339979             BHESCE          5.0679957
## 3   CALOTH  32.17164          6.446855             CALOTH          1.6117136
## 4   CRYPWI  90.50178         33.902422             CRYPWI          8.2225451
## 5   CULLCE  37.87183          8.678791             CULLCE          1.1204271
## 6   CULLRO 104.77849         31.421012             CULLRO          4.6839679
## 7   DIOSAC  18.64885          3.682601             DIOSAC          0.7517077
## 8   DIOSHI  41.96996         19.171340             DIOSHI          5.1237561
## 9   GARCHE  72.36371         20.918866             GARCHE          2.7467817
## 10  HOPEJU  25.14734          7.333223             HOPEJU          1.8333056
## 11  HUMBLA 165.87253         12.029440             HUMBLA          4.9109984
## 12  HYDNOC  38.25049          9.103077             HYDNOC          2.5247393
## 13  LITSLO 121.43935         22.479064             LITSLO          6.2345707
## 14  MANGZE 118.40377         31.189494             MANGZE          8.3357428
## 15  MASTTE  40.92779          5.998414             MASTTE          1.4548291
## 16  MESUFE 111.56748         36.347565             MESUFE          5.0896771
## 17  MESUNA  46.12961         15.077814             MESUNA          2.0330920
## 18  MYRIDA  92.81768         24.096653             MYRIDA          3.7181942
## 19  PALACA  72.90794         30.616966             PALACA          5.3297298
## 20  PALAPE  64.04355         20.643954             PALAPE          2.6876140
## 21  PALATH  16.72893          4.367596             PALATH          0.7720892
## 22  SEMEGA  72.48893         32.991399             SEMEGA          9.5237965
## 23  SEMEWA 140.44895         31.470821             SEMEWA          8.7284352
## 24  SHORAF  25.08289         19.001870             SHORAF          2.6101076
## 25  SHORCN  50.83472         28.845619             SHORCN          8.3270131
## 26  SHORCR  60.30833         32.789833             SHORCR          4.4621311
## 27  SHORDI  77.16232         23.958398             SHORDI          3.7881553
## 28  SHORME  64.70923         38.706647             SHORME         14.6297376
## 29  SHORST  74.03442         30.209984             SHORST          4.1496604
## 30  SHORTR  21.33768          2.995442             SHORTR          0.5295244
## 31  SHORWO  29.41034          5.437338             SHORWO          0.9765748
## 32  SYZYNE  40.10060         10.528076             SYZYNE          2.7183376
## 33  SYZYSP 158.55580                NA             SYZYSP                 NA
## 34  SYZYWI  65.15248         33.682529             SYZYWI         10.6513510
## 35  XYLOCH  20.82333          4.815218             XYLOCH          0.6322691
##    CoefficientOfVariation
## 1              0.41832369
## 2              0.30882398
## 3              0.20038938
## 4              0.37460504
## 5              0.22916219
## 6              0.29988037
## 7              0.19747065
## 8              0.45678721
## 9              0.28907952
## 10             0.29161030
## 11             0.07252219
## 12             0.23798587
## 13             0.18510527
## 14             0.26341639
## 15             0.14656091
## 16             0.32578997
## 17             0.32685757
## 18             0.25961276
## 19             0.41994009
## 20             0.32234247
## 21             0.26108050
## 22             0.45512325
## 23             0.22407302
## 24             0.75756290
## 25             0.56743937
## 26             0.54370319
## 27             0.31049351
## 28             0.59816271
## 29             0.40805323
## 30             0.14038279
## 31             0.18487849
## 32             0.26254162
## 33                     NA
## 34             0.51698000
## 35             0.23124143
write.csv(resultLA, file = "D:/oct2023/decritive LA.csv", row.names = FALSE)
std_dev <- aggregate(LT ~ sp, data =A6_cleanedLT , FUN = sd)

std_error <- std_dev$LT/ sqrt(table(A6_cleanedLT$sp))

cv <- std_dev$LT / aggregate(LT ~ sp, data = A6_cleanedLT, FUN = mean)$LT

mean_value <- aggregate(LT ~ sp, data = A6_cleanedLT, FUN = mean)

resultLT <- data.frame(
  Species = std_dev$sp,
   MeanValue = mean_value$LT,
  StandardDeviation = std_dev$LT,
  StandardError = std_error,
  CoefficientOfVariation = cv
)

print(resultLT)
##    Species MeanValue StandardDeviation StandardError.Var1 StandardError.Freq
## 1   ANISCI 0.1621192        0.02044007             ANISCI        0.002834528
## 2   BHESCE 0.1871231        0.02898734             BHESCE        0.005684885
## 3   CALOTH 0.2527375        0.02679281             CALOTH        0.006698202
## 4   CRYPWI 0.2274444        0.02470509             CRYPWI        0.005823045
## 5   CULLCE 0.1550767        0.01198152             CULLCE        0.001546807
## 6   CULLRO 0.2148273        0.01261122             CULLRO        0.001901213
## 7   DIOSAC 0.1469333        0.04435182             DIOSAC        0.009053278
## 8   DIOSHI 0.2122143        0.02104946             DIOSHI        0.005625705
## 9   GARCHE 0.3322000                NA             GARCHE                 NA
## 10  HOPEJU 0.1443500        0.02347134             HOPEJU        0.005867836
## 11  HUMBLA 0.1629724        0.02162569             HUMBLA        0.004015791
## 12  HYDNOC 0.2502154        0.02789617             HYDNOC        0.007737006
## 13  LITSLO 0.2586714        0.03388711             LITSLO        0.009056710
## 14  MANGZE 0.1750800        0.01302060             MANGZE        0.003361904
## 15  MASTTE 0.1935059        0.01645784             MASTTE        0.003991613
## 16  MESUFE 0.2143654        0.02047613             MESUFE        0.002839528
## 17  MESUNA 0.1859491        0.01554655             MESUNA        0.002096296
## 18  MYRIDA 0.2816524        0.02193952             MYRIDA        0.003385341
## 19  PALACA 0.3008000        0.02753051             PALACA        0.005298250
## 20  PALAPE 0.2109051        0.02058223             PALAPE        0.002679578
## 21  PALATH 0.2976600        0.01483046             PALATH        0.002707659
## 22  SEMEGA 0.3153200        0.01883075             SEMEGA        0.005954808
## 23  SEMEWA 0.3051818        0.02289916             SEMEWA        0.006904357
## 24  SHORAF 0.1524436        0.02353550             SHORAF        0.003173526
## 25  SHORCN 0.1424333        0.01229185             SHORCN        0.003548353
## 26  SHORCR 0.1633236        0.02510533             SHORCR        0.003385202
## 27  SHORDI 0.2202900        0.02041382             SHORDI        0.003227708
## 28  SHORME 0.1959474        0.01416205             SHORME        0.003248998
## 29  SHORST 0.1986909        0.02598572             SHORST        0.003503913
## 30  SHORTR 0.1302187        0.01600108             SHORTR        0.002828618
## 31  SHORWO 0.2080000        0.01655544             SHORWO        0.002973445
## 32  SYZYNE 0.1939333        0.03221186             SYZYNE        0.008317066
## 33  SYZYSP 0.3165000        0.02340399             SYZYSP        0.011701994
## 34  SYZYWI 0.1779400        0.02094162             SYZYWI        0.006622323
## 35  XYLOCH 0.1955759        0.02243494             XYLOCH        0.002945852
##    CoefficientOfVariation
## 1              0.12608048
## 2              0.15491055
## 3              0.10601041
## 4              0.10862032
## 5              0.07726189
## 6              0.05870402
## 7              0.30184996
## 8              0.09918965
## 9                      NA
## 10             0.16260024
## 11             0.13269543
## 12             0.11148864
## 13             0.13100445
## 14             0.07436943
## 15             0.08505087
## 16             0.09551974
## 17             0.08360647
## 18             0.07789574
## 19             0.09152432
## 20             0.09759000
## 21             0.04982348
## 22             0.05971951
## 23             0.07503449
## 24             0.15438818
## 25             0.08629900
## 26             0.15371525
## 27             0.09266793
## 28             0.07227478
## 29             0.13078463
## 30             0.12287844
## 31             0.07959347
## 32             0.16609758
## 33             0.07394625
## 34             0.11768924
## 35             0.11471220
write.csv(resultLT, file = "D:/oct2023/decritive LT.csv", row.names = FALSE)
std_dev <- aggregate(LDMC ~ sp, data =A6_cleanedLDMC , FUN = sd)

std_error <- std_dev$LDMC/ sqrt(table(A6_cleanedLDMC$sp))

cv <- std_dev$LDMC / aggregate(LDMC ~ sp, data = A6_cleanedLDMC, FUN = mean)$LDMC

mean_value <- aggregate(LDMC ~ sp, data = A6_cleanedLDMC, FUN = mean)

resultLDMC <- data.frame(
  Species = std_dev$sp,
   MeanValue = mean_value$LDMC,
  StandardDeviation = std_dev$LDMC,
  StandardError = std_error,
  CoefficientOfVariation = cv
)

print(resultLDMC)
##    Species MeanValue StandardDeviation StandardError.Var1 StandardError.Freq
## 1   ANISCI 0.4197033        0.04372431             ANISCI        0.006122629
## 2   BHESCE 0.3174149        0.09224440             BHESCE        0.018448880
## 3   CALOTH 0.3567781        0.02105615             CALOTH        0.005264037
## 4   CRYPWI 0.4313181        0.02246142             CRYPWI        0.005294208
## 5   CULLCE 0.4315855        0.05168562             CULLCE        0.006845927
## 6   CULLRO 0.4506685        0.05190740             CULLRO        0.007825335
## 7   DIOSAC 0.5029345        0.05187852             DIOSAC        0.010589659
## 8   DIOSHI 0.4172761        0.05910233             DIOSHI        0.016392036
## 9   GARCHE 0.2772784        0.03940161             GARCHE        0.005218871
## 10  HOPEJU 0.4694373        0.03509664             HOPEJU        0.008774161
## 11  HUMBLA 0.3841742        0.04784889             HUMBLA        0.009208524
## 12  HYDNOC 0.3233385        0.07192716             HYDNOC        0.019949004
## 13  LITSLO 0.3310386        0.02255877             LITSLO        0.006029085
## 14  MANGZE 0.3974500        0.02836821             MANGZE        0.007581724
## 15  MASTTE 0.3441357        0.04421103             MASTTE        0.010722751
## 16  MESUFE 0.5180143        0.03200482             MESUFE        0.004526165
## 17  MESUNA 0.4804401        0.04468635             MESUNA        0.006196882
## 18  MYRIDA 0.2884896        0.02685642             MYRIDA        0.004095566
## 19  PALACA 0.3032367        0.02657776             PALACA        0.004698329
## 20  PALAPE 0.3226024        0.02931795             PALAPE        0.003816872
## 21  PALATH 0.2889841        0.02071210             PALATH        0.003661417
## 22  SEMEGA 0.3112090        0.02417514             SEMEGA        0.006461078
## 23  SEMEWA 0.2986692        0.02602638             SEMEWA        0.005679422
## 24  SHORAF 0.4441892        0.06456664             SHORAF        0.008953781
## 25  SHORCN 0.4589071        0.03960436             SHORCN        0.011432793
## 26  SHORCR 0.4346391        0.02731314             SHORCR        0.003682903
## 27  SHORDI 0.4023488        0.02936029             SHORDI        0.004642269
## 28  SHORME 0.4064000        0.02526937             SHORME        0.005650403
## 29  SHORST 0.3864879        0.08209182             SHORST        0.011609537
## 30  SHORTR 0.4109065        0.02284915             SHORTR        0.004103828
## 31  SHORWO 0.3824048        0.06269791             SHORWO        0.011260877
## 32  SYZYNE 0.3607906        0.04166278             SYZYNE        0.010757284
## 33  SYZYSP 0.3156368        0.02241511             SYZYSP        0.008472113
## 34  SYZYWI 0.3595276        0.02947519             SYZYWI        0.009320873
## 35  XYLOCH 0.3354407        0.03454167             XYLOCH        0.004700526
##    CoefficientOfVariation
## 1              0.10417911
## 2              0.29061147
## 3              0.05901749
## 4              0.05207624
## 5              0.11975755
## 6              0.11517868
## 7              0.10315165
## 8              0.14163843
## 9              0.14210128
## 10             0.07476322
## 11             0.12454999
## 12             0.22245157
## 13             0.06814543
## 14             0.07137554
## 15             0.12846975
## 16             0.06178366
## 17             0.09301129
## 18             0.09309318
## 19             0.08764692
## 20             0.09087952
## 21             0.07167213
## 22             0.07768136
## 23             0.08714117
## 24             0.14535841
## 25             0.08630147
## 26             0.06284096
## 27             0.07297222
## 28             0.06217857
## 29             0.21240463
## 30             0.05560670
## 31             0.16395690
## 32             0.11547634
## 33             0.07101549
## 34             0.08198311
## 35             0.10297400
write.csv(resultLDMC, file = "D:/oct2023/decritive LT.csv", row.names = FALSE)