From the data table, we found that each ingridents (A, B, C, D, E) are coming once in each row and column. Therefore, it is a valid Latin Square.
\(X_{ijk}\) = \(\mu\) + \(\tau_i\) + \(\beta_j\) + \(\gamma_k\) + \(\epsilon_{ijk}\)
\(H_0: \tau_i = 0, \forall 0\)
\(H_a:\tau_i \neq 0\) for some i
batches<- c(rep(1,5), rep(2,5), rep(3,5), rep(4,5),rep(5,5))
days<- c(rep(seq(1,5),5))
ing<- c("A", "B", "D", "C", "E",
"C", "E", "A", "D", "B",
"B", "A", "C", "E", "D",
"D", "C", "E", "B", "A",
"E", "D", "B", "A", "C")
obs<- c(8,7,1,7,3,
11,2,7,3,8,
4,9,10,1,5,
6,8,6,6,10,
4,2,3,8,8)
batches<- as.factor(batches)
days<- as.factor(days)
ing<- as.factor(ing)
?aov
anova<- aov(obs~batches+days+ing)
summary(anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## batches 4 15.44 3.86 1.235 0.347618
## days 4 12.24 3.06 0.979 0.455014
## ing 4 141.44 35.36 11.309 0.000488 ***
## Residuals 12 37.52 3.13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1