data()
data(package = .packages(all.available = TRUE))
data("USArrests")
mydata <- force(USArrests)

head(mydata)
##            Murder Assault UrbanPop Rape
## Alabama      13.2     236       58 21.2
## Alaska       10.0     263       48 44.5
## Arizona       8.1     294       80 31.0
## Arkansas      8.8     190       50 19.5
## California    9.0     276       91 40.6
## Colorado      7.9     204       78 38.7
summary(mydata)
##      Murder          Assault         UrbanPop          Rape      
##  Min.   : 0.800   Min.   : 45.0   Min.   :32.00   Min.   : 7.30  
##  1st Qu.: 4.075   1st Qu.:109.0   1st Qu.:54.50   1st Qu.:15.07  
##  Median : 7.250   Median :159.0   Median :66.00   Median :20.10  
##  Mean   : 7.788   Mean   :170.8   Mean   :65.54   Mean   :21.23  
##  3rd Qu.:11.250   3rd Qu.:249.0   3rd Qu.:77.75   3rd Qu.:26.18  
##  Max.   :17.400   Max.   :337.0   Max.   :91.00   Max.   :46.00
library(psych)
mydata2 <- force(sat.act)

head(mydata2)
##       gender education age ACT SATV SATQ
## 29442      2         3  19  24  500  500
## 29457      2         3  23  35  600  500
## 29498      2         3  20  21  480  470
## 29503      1         4  27  26  550  520
## 29504      1         2  33  31  600  550
## 29518      1         5  26  28  640  640
colnames(mydata2) <- c("Gender", "Education", "Age", "General", "Verbal", "Quantitative")

head(mydata2)
##       Gender Education Age General Verbal Quantitative
## 29442      2         3  19      24    500          500
## 29457      2         3  23      35    600          500
## 29498      2         3  20      21    480          470
## 29503      1         4  27      26    550          520
## 29504      1         2  33      31    600          550
## 29518      1         5  26      28    640          640
colnames(mydata2)[4] <- "general"
colnames(mydata2)[4] <- "General"
mydata2$GenderF <- factor(mydata2$Gender, levels = c(1,2), labels = c("M", "F"))
head(mydata2)
##       Gender Education Age General Verbal Quantitative GenderF
## 29442      2         3  19      24    500          500       F
## 29457      2         3  23      35    600          500       F
## 29498      2         3  20      21    480          470       F
## 29503      1         4  27      26    550          520       M
## 29504      1         2  33      31    600          550       M
## 29518      1         5  26      28    640          640       M
summary(mydata2)
##      Gender        Education          Age           General     
##  Min.   :1.000   Min.   :0.000   Min.   :13.00   Min.   : 3.00  
##  1st Qu.:1.000   1st Qu.:3.000   1st Qu.:19.00   1st Qu.:25.00  
##  Median :2.000   Median :3.000   Median :22.00   Median :29.00  
##  Mean   :1.647   Mean   :3.164   Mean   :25.59   Mean   :28.55  
##  3rd Qu.:2.000   3rd Qu.:4.000   3rd Qu.:29.00   3rd Qu.:32.00  
##  Max.   :2.000   Max.   :5.000   Max.   :65.00   Max.   :36.00  
##                                                                 
##      Verbal       Quantitative   GenderF
##  Min.   :200.0   Min.   :200.0   M:247  
##  1st Qu.:550.0   1st Qu.:530.0   F:453  
##  Median :620.0   Median :620.0          
##  Mean   :612.2   Mean   :610.2          
##  3rd Qu.:700.0   3rd Qu.:700.0          
##  Max.   :800.0   Max.   :800.0          
##                  NA's   :13
mydata2F <- mydata2[mydata2$GenderF == "F" , ]

mean(mydata2F$Age)
## [1] 25.44812
describeBy(mydata2$Age, group = mydata2$GenderF)
## 
##  Descriptive statistics by group 
## group: M
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 247 25.86 9.74     22   24.23 5.93  14  58    44 1.43     1.43 0.62
## ------------------------------------------------------------ 
## group: F
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 453 25.45 9.37     22    23.7 5.93  13  65    52 1.77     3.03 0.44
#install.packages("tidyr")
library(tidyr)
mydata2 <- drop_na(mydata2)
mydata3 <- mydata2[mydata2$Quantitative >=600 & mydata2$Quantitative <= 700 , ]

head(mydata3)
##    Gender Education Age General Verbal Quantitative GenderF
## 6       1         5  26      28    640          640       M
## 9       2         4  23      22    400          600       F
## 12      2         4  34      29    710          600       F
## 13      1         4  32      21    600          600       M
## 15      2         3  20      27    640          630       F
## 17      2         3  19      33    640          650       F