rm(list = ls())
if(!require("pacman")) install.packages("pacman")
## 要求されたパッケージ pacman をロード中です
pacman::p_load("tidyverse",
"skimr",
"gt")
options(scipen = 999)
dat_temp <- read_csv("QFR2023TermPaper.csv")
## New names:
## Rows: 350 Columns: 5
## ── Column specification
## ────────────────────────────────────────────────────────
## Delimiter: "," chr (1): Fish_Market dbl (4): ...1, Year, Month, Total
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
skimr::skim(dat_temp)
Data summary
| Name |
dat_temp |
| Number of rows |
350 |
| Number of columns |
5 |
| _______________________ |
|
| Column type frequency: |
|
| character |
1 |
| numeric |
4 |
| ________________________ |
|
| Group variables |
None |
Variable type: character
| Fish_Market |
0 |
1 |
8 |
8 |
0 |
2 |
0 |
Variable type: numeric
| …1 |
0 |
1 |
175.50 |
101.18 |
1 |
88.25 |
175.5 |
262.75 |
350 |
▇▇▇▇▇ |
| Year |
0 |
1 |
2005.13 |
6.92 |
1994 |
1999.00 |
2005.0 |
2011.00 |
2019 |
▇▇▇▆▃ |
| Month |
0 |
1 |
8.33 |
2.91 |
1 |
7.00 |
9.0 |
11.00 |
12 |
▂▁▅▆▇ |
| Total |
0 |
1 |
2317.37 |
3038.65 |
0 |
1.00 |
640.0 |
4176.50 |
13095 |
▇▂▂▁▁ |
summary_1 <- dat_temp |> group_by(Year, Month) |>
mutate(Month=as.integer(Month),Year=as.integer(Year))|>ungroup()
fig_1 <- ggplot(summary_1, aes(x = Month, y = Total, fill = Year)) + geom_bar(stat = "identity", position = "dodge")+
scale_x_continuous(breaks = seq(1,12,1))
fig_1
