require(datasets)
require(ggvis)
## Loading required package: ggvis
require(dplyr)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
require(magrittr)
## Loading required package: magrittr
require(xtable)
## Loading required package: xtable
require(htmlTable)
## Loading required package: htmlTable
*Read data from web
titanic <- read.csv (file="http://www.personal.psu.edu/dlp/w540/datasets/titanicsurvival.csv", header = TRUE, sep=",")
titan1 <-tbl_df(titanic)
titan1
## Source: local data frame [2,201 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
htmlTable(head(titanic))
| Class | Age | Sex | Survive | |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 1 | 1 | 1 |
| 3 | 1 | 1 | 1 | 1 |
| 4 | 1 | 1 | 1 | 1 |
| 5 | 1 | 1 | 1 | 1 |
| 6 | 1 | 1 | 1 | 1 |
*filter Class/Age/Sex/Survive
crew <- filter(titan1, Class == 0)
crew
## Source: local data frame [885 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 0 1 1 1
## 2 0 1 1 1
## 3 0 1 1 1
## 4 0 1 1 1
## 5 0 1 1 1
## 6 0 1 1 1
## 7 0 1 1 1
## 8 0 1 1 1
## 9 0 1 1 1
## 10 0 1 1 1
## .. ... ... ... ...
glimpse(crew)
## Observations: 885
## Variables: 4
## $ Class (int) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
## $ Age (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Sex (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Survive (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
summary(crew)
## Class Age Sex Survive
## Min. :0 Min. :1 Min. :0.000 Min. :0.0000
## 1st Qu.:0 1st Qu.:1 1st Qu.:1.000 1st Qu.:0.0000
## Median :0 Median :1 Median :1.000 Median :0.0000
## Mean :0 Mean :1 Mean :0.974 Mean :0.2395
## 3rd Qu.:0 3rd Qu.:1 3rd Qu.:1.000 3rd Qu.:0.0000
## Max. :0 Max. :1 Max. :1.000 Max. :1.0000
firstclass <- filter(titan1, Class == 1)
firstclass
## Source: local data frame [325 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
glimpse(firstclass)
## Observations: 325
## Variables: 4
## $ Class (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Age (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Sex (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Survive (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
summary(firstclass)
## Class Age Sex Survive
## Min. :1 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :1 Mean :0.9815 Mean :0.5538 Mean :0.6246
## 3rd Qu.:1 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1 Max. :1.0000 Max. :1.0000 Max. :1.0000
secondclass <- filter(titan1, Class == 2)
secondclass
## Source: local data frame [285 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 2 1 1 1
## 2 2 1 1 1
## 3 2 1 1 1
## 4 2 1 1 1
## 5 2 1 1 1
## 6 2 1 1 1
## 7 2 1 1 1
## 8 2 1 1 1
## 9 2 1 1 1
## 10 2 1 1 1
## .. ... ... ... ...
glimpse(secondclass)
## Observations: 285
## Variables: 4
## $ Class (int) 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
## $ Age (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Sex (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Survive (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, ...
summary(secondclass)
## Class Age Sex Survive
## Min. :2 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:2 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.000
## Median :2 Median :1.0000 Median :1.0000 Median :0.000
## Mean :2 Mean :0.9158 Mean :0.6281 Mean :0.414
## 3rd Qu.:2 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :2 Max. :1.0000 Max. :1.0000 Max. :1.000
thirdclass <- filter(titan1, Class == 3)
thirdclass
## Source: local data frame [706 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 3 1 1 1
## 2 3 1 1 1
## 3 3 1 1 1
## 4 3 1 1 1
## 5 3 1 1 1
## 6 3 1 1 1
## 7 3 1 1 1
## 8 3 1 1 1
## 9 3 1 1 1
## 10 3 1 1 1
## .. ... ... ... ...
glimpse(thirdclass)
## Observations: 706
## Variables: 4
## $ Class (int) 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
## $ Age (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Sex (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Survive (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
summary(thirdclass)
## Class Age Sex Survive
## Min. :3 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:3 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :3 Median :1.0000 Median :1.0000 Median :0.0000
## Mean :3 Mean :0.8881 Mean :0.7224 Mean :0.2521
## 3rd Qu.:3 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :3 Max. :1.0000 Max. :1.0000 Max. :1.0000
adult<- filter(titan1, Age == 1)
adult
## Source: local data frame [2,092 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
glimpse(adult)
## Observations: 2,092
## Variables: 4
## $ Class (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Age (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Sex (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Survive (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
summary(adult)
## Class Age Sex Survive
## Min. :0.000 Min. :1 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.000 1st Qu.:1 1st Qu.:1.0000 1st Qu.:0.0000
## Median :1.000 Median :1 Median :1.0000 Median :0.0000
## Mean :1.301 Mean :1 Mean :0.7968 Mean :0.3126
## 3rd Qu.:3.000 3rd Qu.:1 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :3.000 Max. :1 Max. :1.0000 Max. :1.0000
child<- filter(titan1, Age == 0)
child
## Source: local data frame [109 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 0 1 1
## 2 1 0 1 1
## 3 1 0 1 1
## 4 1 0 1 1
## 5 1 0 1 1
## 6 1 0 0 1
## 7 2 0 1 1
## 8 2 0 1 1
## 9 2 0 1 1
## 10 2 0 1 1
## .. ... ... ... ...
glimpse(child)
## Observations: 109
## Variables: 4
## $ Class (int) 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
## $ Age (int) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
## $ Sex (int) 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ...
## $ Survive (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
summary(child)
## Class Age Sex Survive
## Min. :1.00 Min. :0 Min. :0.0000 Min. :0.0000
## 1st Qu.:2.00 1st Qu.:0 1st Qu.:0.0000 1st Qu.:0.0000
## Median :3.00 Median :0 Median :1.0000 Median :1.0000
## Mean :2.67 Mean :0 Mean :0.5872 Mean :0.5229
## 3rd Qu.:3.00 3rd Qu.:0 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :3.00 Max. :0 Max. :1.0000 Max. :1.0000
male<- filter(titan1, Sex == 1)
male
## Source: local data frame [1,731 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
glimpse(male)
## Observations: 1,731
## Variables: 4
## $ Class (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Age (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Sex (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Survive (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
summary(male)
## Class Age Sex Survive
## Min. :0.000 Min. :0.000 Min. :1 Min. :0.000
## 1st Qu.:0.000 1st Qu.:1.000 1st Qu.:1 1st Qu.:0.000
## Median :1.000 Median :1.000 Median :1 Median :0.000
## Mean :1.195 Mean :0.963 Mean :1 Mean :0.212
## 3rd Qu.:3.000 3rd Qu.:1.000 3rd Qu.:1 3rd Qu.:0.000
## Max. :3.000 Max. :1.000 Max. :1 Max. :1.000
female<- filter(titan1, Sex == 0)
female
## Source: local data frame [470 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 0 1
## 2 1 1 0 1
## 3 1 1 0 1
## 4 1 1 0 1
## 5 1 1 0 1
## 6 1 1 0 1
## 7 1 1 0 1
## 8 1 1 0 1
## 9 1 1 0 1
## 10 1 1 0 1
## .. ... ... ... ...
glimpse(female)
## Observations: 470
## Variables: 4
## $ Class (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Age (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Sex (int) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
## $ Survive (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
summary(female)
## Class Age Sex Survive
## Min. :0.000 Min. :0.0000 Min. :0 Min. :0.0000
## 1st Qu.:1.000 1st Qu.:1.0000 1st Qu.:0 1st Qu.:0.0000
## Median :2.000 Median :1.0000 Median :0 Median :1.0000
## Mean :2.011 Mean :0.9043 Mean :0 Mean :0.7319
## 3rd Qu.:3.000 3rd Qu.:1.0000 3rd Qu.:0 3rd Qu.:1.0000
## Max. :3.000 Max. :1.0000 Max. :0 Max. :1.0000
survived<- filter(titan1, Survive == 1)
survived
## Source: local data frame [711 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
glimpse(survived)
## Observations: 711
## Variables: 4
## $ Class (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Age (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Sex (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Survive (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
summary(survived)
## Class Age Sex Survive
## Min. :0.000 Min. :0.0000 Min. :0.0000 Min. :1
## 1st Qu.:0.000 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:1
## Median :1.000 Median :1.0000 Median :1.0000 Median :1
## Mean :1.368 Mean :0.9198 Mean :0.5162 Mean :1
## 3rd Qu.:2.500 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1
## Max. :3.000 Max. :1.0000 Max. :1.0000 Max. :1
died<- filter(titan1, Survive == 0)
died
## Source: local data frame [1,490 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 0
## 2 1 1 1 0
## 3 1 1 1 0
## 4 1 1 1 0
## 5 1 1 1 0
## 6 1 1 1 0
## 7 1 1 1 0
## 8 1 1 1 0
## 9 1 1 1 0
## 10 1 1 1 0
## .. ... ... ... ...
glimpse(died)
## Observations: 1,490
## Variables: 4
## $ Class (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Age (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Sex (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ Survive (int) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
summary(died)
## Class Age Sex Survive
## Min. :0.000 Min. :0.0000 Min. :0.0000 Min. :0
## 1st Qu.:0.000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:0
## Median :1.000 Median :1.0000 Median :1.0000 Median :0
## Mean :1.369 Mean :0.9651 Mean :0.9154 Mean :0
## 3rd Qu.:3.000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0
## Max. :3.000 Max. :1.0000 Max. :1.0000 Max. :0
passangercrew <- filter(titan1, Class>=0)
passangercrew
## Source: local data frame [2,201 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
nrow(passangercrew)
## [1] 2201
passangercrewNumber <- nrow(passangercrew)
passangercrewNumber
## [1] 2201
spassangercrew <- filter(survived,Class>=0)
spassangercrew
## Source: local data frame [711 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
nrow(spassangercrew)/nrow(titan1)
## [1] 0.323035
spassangercrewPortion <-nrow(spassangercrew)/nrow(titan1)
spassangercrewPortion
## [1] 0.323035
crewspassanger <- filter(survived, Class==0)
crewspassanger
## Source: local data frame [212 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 0 1 1 1
## 2 0 1 1 1
## 3 0 1 1 1
## 4 0 1 1 1
## 5 0 1 1 1
## 6 0 1 1 1
## 7 0 1 1 1
## 8 0 1 1 1
## 9 0 1 1 1
## 10 0 1 1 1
## .. ... ... ... ...
nrow(crewspassanger)/nrow(crew)
## [1] 0.239548
crewspassangerPortion<-nrow(crewspassanger)/nrow(crew)
crewspassangerPortion
## [1] 0.239548
firstspassanger <- filter(survived, Class==1)
firstspassanger
## Source: local data frame [203 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
nrow(firstspassanger)/nrow(firstclass)
## [1] 0.6246154
firstspassangerPortion<-nrow(firstspassanger)/nrow(firstclass)
firstspassangerPortion
## [1] 0.6246154
secondspassanger <- filter(survived, Class==2)
secondspassanger
## Source: local data frame [118 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 2 1 1 1
## 2 2 1 1 1
## 3 2 1 1 1
## 4 2 1 1 1
## 5 2 1 1 1
## 6 2 1 1 1
## 7 2 1 1 1
## 8 2 1 1 1
## 9 2 1 1 1
## 10 2 1 1 1
## .. ... ... ... ...
nrow(secondspassanger)/nrow(secondclass)
## [1] 0.4140351
secondspassangerPortion<-nrow(secondspassanger)/nrow(secondclass)
secondspassangerPortion
## [1] 0.4140351
thirdspassanger <- filter(survived, Class==3)
thirdspassanger
## Source: local data frame [178 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 3 1 1 1
## 2 3 1 1 1
## 3 3 1 1 1
## 4 3 1 1 1
## 5 3 1 1 1
## 6 3 1 1 1
## 7 3 1 1 1
## 8 3 1 1 1
## 9 3 1 1 1
## 10 3 1 1 1
## .. ... ... ... ...
nrow(thirdspassanger)/nrow(thirdclass)
## [1] 0.2521246
thirdspassangerPortion<-nrow(thirdspassanger)/nrow(thirdclass)
thirdspassangerPortion
## [1] 0.2521246
malespassanger <- filter(survived, Sex==1)
malespassanger
## Source: local data frame [367 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
nrow(malespassanger)/nrow(male)
## [1] 0.2120162
femalespassanger <- filter(survived, Sex==0)
femalespassanger
## Source: local data frame [344 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 0 1
## 2 1 1 0 1
## 3 1 1 0 1
## 4 1 1 0 1
## 5 1 1 0 1
## 6 1 1 0 1
## 7 1 1 0 1
## 8 1 1 0 1
## 9 1 1 0 1
## 10 1 1 0 1
## .. ... ... ... ...
nrow(femalespassanger)/nrow(female)
## [1] 0.7319149
summarise(group_by(female,Sex), survival_rate=nrow(malespassanger)/nrow(male) , nrow(femalespassanger)/nrow(female) ) ```
adultspassanger <- filter(survived, Age==1)
adultspassanger
## Source: local data frame [654 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
nrow(adultspassanger)/nrow(adult)
## [1] 0.3126195
childspassanger <- filter(survived, Age==0)
childspassanger
## Source: local data frame [57 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 0 1 1
## 2 1 0 1 1
## 3 1 0 1 1
## 4 1 0 1 1
## 5 1 0 1 1
## 6 1 0 0 1
## 7 2 0 1 1
## 8 2 0 1 1
## 9 2 0 1 1
## 10 2 0 1 1
## .. ... ... ... ...
nrow(childspassanger)/nrow(child)
## [1] 0.5229358
summarise(group_by(child,Age), survival_rate=nrow(adultspassanger)/nrow(adult) , nrow(childspassanger)/nrow(child) )
## Source: local data frame [1 x 3]
##
## Age survival_rate nrow(childspassanger)/nrow(child)
## (int) (dbl) (dbl)
## 1 0 0.3126195 0.5229358
adultmale <-filter(titan1, Age==1, Sex==1)
adultmale
## Source: local data frame [1,667 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
adultmalespassanger<-filter(survived, Age==1, Sex==1)
adultmalespassanger
## Source: local data frame [338 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
nrow(adultmalespassanger)/nrow(adultmale)
## [1] 0.2027594
childmale <-filter(titan1, Age==0, Sex==1)
childmale
## Source: local data frame [64 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 0 1 1
## 2 1 0 1 1
## 3 1 0 1 1
## 4 1 0 1 1
## 5 1 0 1 1
## 6 2 0 1 1
## 7 2 0 1 1
## 8 2 0 1 1
## 9 2 0 1 1
## 10 2 0 1 1
## .. ... ... ... ...
childmalespassanger<-filter(survived, Age==0, Sex==1)
childmalespassanger
## Source: local data frame [29 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 0 1 1
## 2 1 0 1 1
## 3 1 0 1 1
## 4 1 0 1 1
## 5 1 0 1 1
## 6 2 0 1 1
## 7 2 0 1 1
## 8 2 0 1 1
## 9 2 0 1 1
## 10 2 0 1 1
## .. ... ... ... ...
nrow(childmalespassanger)/nrow(childmale)
## [1] 0.453125
adultfemale <-filter(titan1, Age==1, Sex==0)
adultfemale
## Source: local data frame [425 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 0 1
## 2 1 1 0 1
## 3 1 1 0 1
## 4 1 1 0 1
## 5 1 1 0 1
## 6 1 1 0 1
## 7 1 1 0 1
## 8 1 1 0 1
## 9 1 1 0 1
## 10 1 1 0 1
## .. ... ... ... ...
adultfemalespassanger<-filter(survived, Age==1, Sex==0)
adultfemalespassanger
## Source: local data frame [316 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 0 1
## 2 1 1 0 1
## 3 1 1 0 1
## 4 1 1 0 1
## 5 1 1 0 1
## 6 1 1 0 1
## 7 1 1 0 1
## 8 1 1 0 1
## 9 1 1 0 1
## 10 1 1 0 1
## .. ... ... ... ...
nrow(adultfemalespassanger)/nrow(adultfemale)
## [1] 0.7435294
childfemale <-filter(titan1, Age==0, Sex==0)
childfemale
## Source: local data frame [45 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 0 0 1
## 2 2 0 0 1
## 3 2 0 0 1
## 4 2 0 0 1
## 5 2 0 0 1
## 6 2 0 0 1
## 7 2 0 0 1
## 8 2 0 0 1
## 9 2 0 0 1
## 10 2 0 0 1
## .. ... ... ... ...
childfemalespassanger<-filter(survived, Age==0, Sex==0)
childfemalespassanger
## Source: local data frame [28 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 0 0 1
## 2 2 0 0 1
## 3 2 0 0 1
## 4 2 0 0 1
## 5 2 0 0 1
## 6 2 0 0 1
## 7 2 0 0 1
## 8 2 0 0 1
## 9 2 0 0 1
## 10 2 0 0 1
## .. ... ... ... ...
nrow(childfemalespassanger)/nrow(childfemale)
## [1] 0.6222222
nrow(adultfemalespassanger)/nrow(adultfemale)
## [1] 0.7435294
nrow(childfemalespassanger)/nrow(childfemale)
## [1] 0.6222222
nrow(childmalespassanger)/nrow(childmale)
## [1] 0.453125
nrow(adultmalespassanger)/nrow(adultmale)
## [1] 0.2027594
nrow(firstspassanger)/nrow(firstclass)
## [1] 0.6246154
firstadultmale <-filter(titan1, Class==1, Age==1, Sex==1)
firstadultmale
## Source: local data frame [175 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
firstadultmalespassanger<-filter(survived,Class==1, Age==1, Sex==1)
firstadultmalespassanger
## Source: local data frame [57 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1
## 7 1 1 1 1
## 8 1 1 1 1
## 9 1 1 1 1
## 10 1 1 1 1
## .. ... ... ... ...
nrow(firstadultmalespassanger)/nrow(firstadultmale)
## [1] 0.3257143
firstchildmale <-filter(titan1, Class==1,Age==0, Sex==1)
firstchildmale
## Source: local data frame [5 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 0 1 1
## 2 1 0 1 1
## 3 1 0 1 1
## 4 1 0 1 1
## 5 1 0 1 1
firstchildmalespassanger<-filter(survived, Class==1, Age==0, Sex==1)
firstchildmalespassanger
## Source: local data frame [5 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 0 1 1
## 2 1 0 1 1
## 3 1 0 1 1
## 4 1 0 1 1
## 5 1 0 1 1
nrow(firstchildmalespassanger)/nrow(firstchildmale)
## [1] 1
firstadultfemale <-filter(titan1, Class==1,Age==1, Sex==0)
firstadultfemale
## Source: local data frame [144 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 0 1
## 2 1 1 0 1
## 3 1 1 0 1
## 4 1 1 0 1
## 5 1 1 0 1
## 6 1 1 0 1
## 7 1 1 0 1
## 8 1 1 0 1
## 9 1 1 0 1
## 10 1 1 0 1
## .. ... ... ... ...
firstadultfemalespassanger<-filter(survived,Class==1, Age==1, Sex==0)
firstadultfemalespassanger
## Source: local data frame [140 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 1 0 1
## 2 1 1 0 1
## 3 1 1 0 1
## 4 1 1 0 1
## 5 1 1 0 1
## 6 1 1 0 1
## 7 1 1 0 1
## 8 1 1 0 1
## 9 1 1 0 1
## 10 1 1 0 1
## .. ... ... ... ...
nrow(firstadultfemalespassanger)/nrow(firstadultfemale)
## [1] 0.9722222
firstchildfemale <-filter(titan1, Class==1,Age==0, Sex==0)
firstchildfemale
## Source: local data frame [1 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 0 0 1
firstchildfemalespassanger<-filter(survived, Class==1,Age==0, Sex==0)
firstchildfemalespassanger
## Source: local data frame [1 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 1 0 0 1
nrow(firstchildfemalespassanger)/nrow(firstchildfemale)
## [1] 1
nrow(secondspassanger)/nrow(secondclass)
## [1] 0.4140351
secondadultmale <-filter(titan1, Class==2, Age==1, Sex==1)
secondadultmale
## Source: local data frame [168 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 2 1 1 1
## 2 2 1 1 1
## 3 2 1 1 1
## 4 2 1 1 1
## 5 2 1 1 1
## 6 2 1 1 1
## 7 2 1 1 1
## 8 2 1 1 1
## 9 2 1 1 1
## 10 2 1 1 1
## .. ... ... ... ...
secondadultmalespassanger<-filter(survived,Class==2, Age==1, Sex==1)
secondadultmalespassanger
## Source: local data frame [14 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 2 1 1 1
## 2 2 1 1 1
## 3 2 1 1 1
## 4 2 1 1 1
## 5 2 1 1 1
## 6 2 1 1 1
## 7 2 1 1 1
## 8 2 1 1 1
## 9 2 1 1 1
## 10 2 1 1 1
## 11 2 1 1 1
## 12 2 1 1 1
## 13 2 1 1 1
## 14 2 1 1 1
nrow(secondadultmalespassanger)/nrow(secondadultmale)
## [1] 0.08333333
secondchildmale <-filter(titan1, Class==2,Age==0, Sex==1)
secondchildmale
## Source: local data frame [11 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 2 0 1 1
## 2 2 0 1 1
## 3 2 0 1 1
## 4 2 0 1 1
## 5 2 0 1 1
## 6 2 0 1 1
## 7 2 0 1 1
## 8 2 0 1 1
## 9 2 0 1 1
## 10 2 0 1 1
## 11 2 0 1 1
secondchildmalespassanger<-filter(survived, Class==2, Age==0, Sex==1)
secondchildmalespassanger
## Source: local data frame [11 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 2 0 1 1
## 2 2 0 1 1
## 3 2 0 1 1
## 4 2 0 1 1
## 5 2 0 1 1
## 6 2 0 1 1
## 7 2 0 1 1
## 8 2 0 1 1
## 9 2 0 1 1
## 10 2 0 1 1
## 11 2 0 1 1
nrow(secondchildmalespassanger)/nrow(secondchildmale)
## [1] 1
secondadultfemale <-filter(titan1, Class==2,Age==1, Sex==0)
secondadultfemale
## Source: local data frame [93 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 2 1 0 1
## 2 2 1 0 1
## 3 2 1 0 1
## 4 2 1 0 1
## 5 2 1 0 1
## 6 2 1 0 1
## 7 2 1 0 1
## 8 2 1 0 1
## 9 2 1 0 1
## 10 2 1 0 1
## .. ... ... ... ...
secondadultfemalespassanger<-filter(survived,Class==2, Age==1, Sex==0)
secondadultfemalespassanger
## Source: local data frame [80 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 2 1 0 1
## 2 2 1 0 1
## 3 2 1 0 1
## 4 2 1 0 1
## 5 2 1 0 1
## 6 2 1 0 1
## 7 2 1 0 1
## 8 2 1 0 1
## 9 2 1 0 1
## 10 2 1 0 1
## .. ... ... ... ...
nrow(secondadultfemalespassanger)/nrow(secondadultfemale)
## [1] 0.8602151
secondchildfemale <-filter(titan1, Class==2,Age==0, Sex==0)
secondchildfemale
## Source: local data frame [13 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 2 0 0 1
## 2 2 0 0 1
## 3 2 0 0 1
## 4 2 0 0 1
## 5 2 0 0 1
## 6 2 0 0 1
## 7 2 0 0 1
## 8 2 0 0 1
## 9 2 0 0 1
## 10 2 0 0 1
## 11 2 0 0 1
## 12 2 0 0 1
## 13 2 0 0 1
secondchildfemalespassanger<-filter(survived, Class==2,Age==0, Sex==0)
secondchildfemalespassanger
## Source: local data frame [13 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 2 0 0 1
## 2 2 0 0 1
## 3 2 0 0 1
## 4 2 0 0 1
## 5 2 0 0 1
## 6 2 0 0 1
## 7 2 0 0 1
## 8 2 0 0 1
## 9 2 0 0 1
## 10 2 0 0 1
## 11 2 0 0 1
## 12 2 0 0 1
## 13 2 0 0 1
nrow(secondchildfemalespassanger)/nrow(secondchildfemale)
## [1] 1
nrow(thirdspassanger)/nrow(thirdclass)
## [1] 0.2521246
thirdadultmale <-filter(titan1, Class==3, Age==1, Sex==1)
thirdadultmale
## Source: local data frame [462 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 3 1 1 1
## 2 3 1 1 1
## 3 3 1 1 1
## 4 3 1 1 1
## 5 3 1 1 1
## 6 3 1 1 1
## 7 3 1 1 1
## 8 3 1 1 1
## 9 3 1 1 1
## 10 3 1 1 1
## .. ... ... ... ...
thirdadultmalespassanger<-filter(survived,Class==3, Age==1, Sex==1)
thirdadultmalespassanger
## Source: local data frame [75 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 3 1 1 1
## 2 3 1 1 1
## 3 3 1 1 1
## 4 3 1 1 1
## 5 3 1 1 1
## 6 3 1 1 1
## 7 3 1 1 1
## 8 3 1 1 1
## 9 3 1 1 1
## 10 3 1 1 1
## .. ... ... ... ...
nrow(thirdadultmalespassanger)/nrow(thirdadultmale)
## [1] 0.1623377
thirdchildmale <-filter(titan1, Class==3,Age==0, Sex==1)
thirdchildmale
## Source: local data frame [48 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 3 0 1 1
## 2 3 0 1 1
## 3 3 0 1 1
## 4 3 0 1 1
## 5 3 0 1 1
## 6 3 0 1 1
## 7 3 0 1 1
## 8 3 0 1 1
## 9 3 0 1 1
## 10 3 0 1 1
## .. ... ... ... ...
thirdchildmalespassanger<-filter(survived, Class==3, Age==0, Sex==1)
thirdchildmalespassanger
## Source: local data frame [13 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 3 0 1 1
## 2 3 0 1 1
## 3 3 0 1 1
## 4 3 0 1 1
## 5 3 0 1 1
## 6 3 0 1 1
## 7 3 0 1 1
## 8 3 0 1 1
## 9 3 0 1 1
## 10 3 0 1 1
## 11 3 0 1 1
## 12 3 0 1 1
## 13 3 0 1 1
nrow(thirdchildmalespassanger)/nrow(thirdchildmale)
## [1] 0.2708333
thirdadultfemale <-filter(titan1, Class==3,Age==1, Sex==0)
thirdadultfemale
## Source: local data frame [165 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 3 1 0 1
## 2 3 1 0 1
## 3 3 1 0 1
## 4 3 1 0 1
## 5 3 1 0 1
## 6 3 1 0 1
## 7 3 1 0 1
## 8 3 1 0 1
## 9 3 1 0 1
## 10 3 1 0 1
## .. ... ... ... ...
thirdadultfemalespassanger<-filter(survived,Class==3, Age==1, Sex==0)
thirdadultfemalespassanger
## Source: local data frame [76 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 3 1 0 1
## 2 3 1 0 1
## 3 3 1 0 1
## 4 3 1 0 1
## 5 3 1 0 1
## 6 3 1 0 1
## 7 3 1 0 1
## 8 3 1 0 1
## 9 3 1 0 1
## 10 3 1 0 1
## .. ... ... ... ...
nrow(thirdadultfemalespassanger)/nrow(thirdadultfemale)
## [1] 0.4606061
thirdchildfemale <-filter(titan1, Class==3,Age==0, Sex==0)
thirdchildfemale
## Source: local data frame [31 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 3 0 0 1
## 2 3 0 0 1
## 3 3 0 0 1
## 4 3 0 0 1
## 5 3 0 0 1
## 6 3 0 0 1
## 7 3 0 0 1
## 8 3 0 0 1
## 9 3 0 0 1
## 10 3 0 0 1
## .. ... ... ... ...
thirdchildfemalespassanger<-filter(survived, Class==3,Age==0, Sex==0)
thirdchildfemalespassanger
## Source: local data frame [14 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 3 0 0 1
## 2 3 0 0 1
## 3 3 0 0 1
## 4 3 0 0 1
## 5 3 0 0 1
## 6 3 0 0 1
## 7 3 0 0 1
## 8 3 0 0 1
## 9 3 0 0 1
## 10 3 0 0 1
## 11 3 0 0 1
## 12 3 0 0 1
## 13 3 0 0 1
## 14 3 0 0 1
nrow(thirdchildfemalespassanger)/nrow(thirdchildfemale)
## [1] 0.4516129
nrow(crewspassanger)/nrow(crew)
## [1] 0.239548
crewadultmale <-filter(titan1, Class==0, Age==1, Sex==1)
crewadultmale
## Source: local data frame [862 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 0 1 1 1
## 2 0 1 1 1
## 3 0 1 1 1
## 4 0 1 1 1
## 5 0 1 1 1
## 6 0 1 1 1
## 7 0 1 1 1
## 8 0 1 1 1
## 9 0 1 1 1
## 10 0 1 1 1
## .. ... ... ... ...
crewadultmalespassanger<-filter(survived,Class==0,Age==1,Sex==1)
crewadultmalespassanger
## Source: local data frame [192 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 0 1 1 1
## 2 0 1 1 1
## 3 0 1 1 1
## 4 0 1 1 1
## 5 0 1 1 1
## 6 0 1 1 1
## 7 0 1 1 1
## 8 0 1 1 1
## 9 0 1 1 1
## 10 0 1 1 1
## .. ... ... ... ...
nrow(crewadultmalespassanger)/nrow(crewadultmale)
## [1] 0.2227378
crewadultfemale <-filter(titan1, Class==0,Age==1, Sex==0)
crewadultfemale
## Source: local data frame [23 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 0 1 0 1
## 2 0 1 0 1
## 3 0 1 0 1
## 4 0 1 0 1
## 5 0 1 0 1
## 6 0 1 0 1
## 7 0 1 0 1
## 8 0 1 0 1
## 9 0 1 0 1
## 10 0 1 0 1
## .. ... ... ... ...
crewadultfemalespassanger<-filter(survived,Class==0, Age==1, Sex==0)
crewadultfemalespassanger
## Source: local data frame [20 x 4]
##
## Class Age Sex Survive
## (int) (int) (int) (int)
## 1 0 1 0 1
## 2 0 1 0 1
## 3 0 1 0 1
## 4 0 1 0 1
## 5 0 1 0 1
## 6 0 1 0 1
## 7 0 1 0 1
## 8 0 1 0 1
## 9 0 1 0 1
## 10 0 1 0 1
## 11 0 1 0 1
## 12 0 1 0 1
## 13 0 1 0 1
## 14 0 1 0 1
## 15 0 1 0 1
## 16 0 1 0 1
## 17 0 1 0 1
## 18 0 1 0 1
## 19 0 1 0 1
## 20 0 1 0 1
nrow(crewadultfemalespassanger)/nrow(crewadultfemale)
## [1] 0.8695652
Survival rate by groups
*1-1 Second Class Child Female:100.00%(13/13).
*1-2. Second Class Child Male: 100.00%(11/11).
*1-3. First Class Child Male: 100.00%(5/5).
*1-4. First Class Child Female: 100.00%(1/1).
*5. First Class Adult Female: 97.22% (140/144).
*6. Crew Adult Female: 86.96% (20/23).
*7. Second Class Adult Female: 86.02%(80/93).
*8. Third Class Adult Female: 46.06%(76/165).
*9. Third Class ChildFemale:45.16% (14/31).
*10. First Class Adult Male: 32.57% (57/175).
*11. Third Class Child Male: 27.08% (13/48).
*12. Crew Adult Male: 22.27% (192/862).
*13. Third Class Adult Male: 16.23% (75/462).
*14. Second Class Adult Male: 8.33% (14/168).
My major finding is that the survival rate for passengers on the Titanic depends on three parameters: class, age and sex. In order to compare the survival rates, passengers were divided into fourteen groups based on the three parameters above. The survival rate of first and second class children(male, female) is 100%. However, the sample number is too small. The sample only includes 13 second class female children, 11 second class male children , 5 first class male children and 1 first class female children. Among the groups whose sample number is larger than 20, the first class adult female survival rate is the highest (97.22%). The adult female crew members have the second highest survival rate (86.96%). The second class adult females have the third highest survival rate (86.02%). All the other groups’ survival rate is less than 50%. The groups with the lowest survival rates are as follows: the second class adult males (8.33%) , the third class adult males (16.23%), and adult male crew members (22.27%). Overall, from these statistics, I deduced that children and females were saved primarily. Nevertheless, it was possible that children and females in the third class were pushed back on the priority relief list. Among the adult male group, the firs class adult males’ survival rate is relatively higher than any other male adult group. (32.57%) From the fact, I inferred that the first class male adult passengers were considered priority number two right after children and females.