Import data

# excel file
beesdata <- read_excel("../03_module6/beesdata.xlsx")
beesdata
## # A tibble: 1,222 × 10
##     year months        state     colony_n colony_max colony_lost colony_lost_pct
##    <dbl> <chr>         <chr>        <dbl> <chr>            <dbl>           <dbl>
##  1  2015 January-March Alabama       7000 7000              1800              26
##  2  2015 January-March Arizona      35000 35000             4600              13
##  3  2015 January-March Arkansas     13000 14000             1500              11
##  4  2015 January-March Californ…  1440000 1690000         255000              15
##  5  2015 January-March Colorado      3500 12500             1500              12
##  6  2015 January-March Connecti…     3900 3900               870              22
##  7  2015 January-March Florida     305000 315000           42000              13
##  8  2015 January-March Georgia     104000 105000           14500              14
##  9  2015 January-March Hawaii       10500 10500              380               4
## 10  2015 January-March Idaho        81000 88000             3700               4
## # ℹ 1,212 more rows
## # ℹ 3 more variables: colony_added <chr>, colony_reno <chr>,
## #   colony_reno_pct <chr>

Apply the following dplyr verbs to your data

Filter rows

filter(beesdata, year == 2013, state == "New Hampshire")
## # A tibble: 0 × 10
## # ℹ 10 variables: year <dbl>, months <chr>, state <chr>, colony_n <dbl>,
## #   colony_max <chr>, colony_lost <dbl>, colony_lost_pct <dbl>,
## #   colony_added <chr>, colony_reno <chr>, colony_reno_pct <chr>

Arrange rows

arrange(beesdata, desc(colony_lost_pct), desc(year))
## # A tibble: 1,222 × 10
##     year months           state  colony_n colony_max colony_lost colony_lost_pct
##    <dbl> <chr>            <chr>     <dbl> <chr>            <dbl>           <dbl>
##  1  2018 January-March    New M…     7500 7500              3900              52
##  2  2020 April-June       Alaba…     8500 8500              4100              48
##  3  2016 January-March    Oklah…     6000 6000              2900              48
##  4  2015 January-March    Ohio      18000 22000            10500              48
##  5  2017 January-March    Massa…     3300 3300              1500              45
##  6  2015 January-March    Maryl…     7500 10000             4100              41
##  7  2015 January-March    Illin…     6000 10500             4200              40
##  8  2015 October-December Kansas     8500 8500              3400              40
##  9  2015 January-March    Kentu…     7500 10500             4100              39
## 10  2018 October-December New M…     8000 8000              3000              38
## # ℹ 1,212 more rows
## # ℹ 3 more variables: colony_added <chr>, colony_reno <chr>,
## #   colony_reno_pct <chr>

Select columns

select(beesdata, year, months, state, colony_lost)
## # A tibble: 1,222 × 4
##     year months        state       colony_lost
##    <dbl> <chr>         <chr>             <dbl>
##  1  2015 January-March Alabama            1800
##  2  2015 January-March Arizona            4600
##  3  2015 January-March Arkansas           1500
##  4  2015 January-March California       255000
##  5  2015 January-March Colorado           1500
##  6  2015 January-March Connecticut         870
##  7  2015 January-March Florida           42000
##  8  2015 January-March Georgia           14500
##  9  2015 January-March Hawaii              380
## 10  2015 January-March Idaho              3700
## # ℹ 1,212 more rows
select(beesdata, year, months, state, contains("pct"))
## # A tibble: 1,222 × 5
##     year months        state       colony_lost_pct colony_reno_pct
##    <dbl> <chr>         <chr>                 <dbl> <chr>          
##  1  2015 January-March Alabama                  26 4              
##  2  2015 January-March Arizona                  13 6              
##  3  2015 January-March Arkansas                 11 1              
##  4  2015 January-March California               15 7              
##  5  2015 January-March Colorado                 12 1              
##  6  2015 January-March Connecticut              22 NA             
##  7  2015 January-March Florida                  13 8              
##  8  2015 January-March Georgia                  14 9              
##  9  2015 January-March Hawaii                    4 7              
## 10  2015 January-March Idaho                     4 9              
## # ℹ 1,212 more rows

Add columns

mutate(beesdata,
       colony_after_loss = colony_n - colony_lost) %>%
    select(year, state, colony_after_loss)
## # A tibble: 1,222 × 3
##     year state       colony_after_loss
##    <dbl> <chr>                   <dbl>
##  1  2015 Alabama                  5200
##  2  2015 Arizona                 30400
##  3  2015 Arkansas                11500
##  4  2015 California            1185000
##  5  2015 Colorado                 2000
##  6  2015 Connecticut              3030
##  7  2015 Florida                263000
##  8  2015 Georgia                 89500
##  9  2015 Hawaii                  10120
## 10  2015 Idaho                   77300
## # ℹ 1,212 more rows

Summarize by groups

beesdata %>%
    group_by(state) %>%
    summarise(avg_loss = mean(colony_lost_pct, na.rm = TRUE)) %>%
    arrange(avg_loss)
## # A tibble: 47 × 2
##    state        avg_loss
##    <chr>           <dbl>
##  1 New Jersey       5.28
##  2 Hawaii           5.46
##  3 Vermont          5.54
##  4 Montana          6.48
##  5 Connecticut      7.2 
##  6 North Dakota     7.33
##  7 Oregon           7.48
##  8 Louisiana        7.52
##  9 South Dakota     8   
## 10 Maine            8.52
## # ℹ 37 more rows