Load packages

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(janitor) 
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(haven) 
library(naniar) 
library(ggpubr) 
library(report) 
library(ggplot2)
library(reshape2)
## 
## Attaching package: 'reshape2'
## 
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(sjPlot)
## Install package "strengejacke" from GitHub (`devtools::install_github("strengejacke/strengejacke")`) to load all sj-packages at once!
library(parameters)
library(mediation)
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## 
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## Loading required package: mvtnorm
## Loading required package: sandwich
## mediation: Causal Mediation Analysis
## Version: 4.5.0
library(lavaan)
## This is lavaan 0.6-15
## lavaan is FREE software! Please report any bugs.
library(psych)
## 
## Attaching package: 'psych'
## 
## The following object is masked from 'package:lavaan':
## 
##     cor2cov
## 
## The following object is masked from 'package:mediation':
## 
##     mediate
## 
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(ggdist)
library(gghalves)
library(ggpp)
## 
## Attaching package: 'ggpp'
## 
## The following object is masked from 'package:ggplot2':
## 
##     annotate
library(interactions)
library(ggpmisc)
## Registered S3 method overwritten by 'ggpmisc':
##   method                  from   
##   as.character.polynomial polynom

General set up

Full_data <- read_csv("Full_data_all.csv")
## Rows: 259 Columns: 208
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr   (1): Group
## dbl (207): ID, B_IUS_1, B_IUS_2, B_IUS_3, B_IUS_4, B_IUS_5, B_IUS_6, B_IUS_7...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Demographics_excluded <- read_csv("Demographics.csv")
## New names:
## Rows: 259 Columns: 11
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (8): Group, Gender_value, Ethnicity_value, Country_residence, Ppt_educat... dbl
## (3): ...1, ID, Age
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
Acceptability_numeric <- read_csv("Acceptability.csv")
## New names:
## Rows: 209 Columns: 7
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (1): Group dbl (6): ...1, ID, B_acceptability_understandable,
## B_acceptability_useful, B...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`

Behavioural task data set up

BT_full_raw <- read_csv("Full_BT_data.csv") %>% 
  dplyr::select("ID", "A_PRE_samples", "B_POST_samples") # numbers in the PRE_samples and POST_samples columns are the number of times participants sampled across each set of 10 trials (maximum being 300 - one ppt has 308 due to a glitch)
## New names:
## Rows: 259 Columns: 4
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (4): ...1, ID, A_PRE_samples, B_POST_samples
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
# Adding in groups + excluding participants who only sampled (never made a choice = did not understand task)
BT_data <- merge(BT_full_raw,Full_data,
                      by=c("ID"),
                      all = TRUE) %>% 
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples", "A_PRE_IUS_total", "B_POST_IUS_total") %>% 
  filter(ID != "8892522", ID != "8892570", ID != "8892628", ID != "8892668", ID != "8892681", ID != "8892779", ID != "8892794", ID != "8893157", ID != "8893186", ID != "8892873", ID != "9113535", ID != "9113549", ID != "9113550") # excluding those not making a choice

Hypothesis 1

Cognitive IU with Depression Symptoms

Plot_ius_phq <- ggplot(data = Full_data, aes(x = A_PRE_IUS_total, y = A_PRE_PHQ_total)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", color = "black") +
  scale_x_continuous(name = "Baseline Intolerance of Uncertainty (IUS-12)") +
  scale_y_continuous(name = "Baseline Depression Symptoms (PHQ-8)") +
  coord_cartesian(xlim = c(12, 60)) +
  theme(text = element_text(size = 20), axis.text = element_text(size = 20), axis.title.x = element_text(size = 20), axis.title.y = element_text(size = 20)) +
  theme_classic()
print(Plot_ius_phq)
## `geom_smooth()` using formula = 'y ~ x'

ggsave(plot=Plot_ius_phq, 'IUS_PHQ.png',
       width=7, height=4,
       dpi=500)
## `geom_smooth()` using formula = 'y ~ x'

Cognitive IU with Anxiety Symptoms

Plot_ius_gad <- ggplot(data = Full_data, aes(x = A_PRE_IUS_total, y = A_PRE_GAD_total)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", color = "black") +
  scale_x_continuous(name = "Baseline Intolerance of Uncertainty (IUS-12)") +
  scale_y_continuous(name = "Baseline Anxiety (GAD-7)") +
  coord_cartesian(xlim = c(12, 60)) +
  theme(text = element_text(size = 20), axis.text = element_text(size = 20), axis.title.x = element_text(size = 20), axis.title.y = element_text(size = 20)) +
  theme_classic()
print(Plot_ius_gad)
## `geom_smooth()` using formula = 'y ~ x'

ggsave(plot=Plot_ius_gad, 'IUS_GAD.png',
       width=7, height=4,
       dpi=500)
## `geom_smooth()` using formula = 'y ~ x'

Cognitive IU with Behavioural IU

### Excluding those who never sample
BT_removed <- BT_data %>% 
  filter(A_PRE_samples != "0")

Plot_ius_btremoved <- ggplot(data = BT_removed, aes(x = A_PRE_IUS_total, y = A_PRE_samples)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", color = "black") +
  scale_x_continuous(name = "Baseline Cognitive Intolerance of Uncertainty (IUS-12)") +
  scale_y_continuous(name = "Baseline Behavioural Intolerance of Uncertainty \n (Total Number of Samples)") +
  coord_cartesian(xlim = c(12, 60)) +
  theme(text = element_text(size = 20), axis.text = element_text(size = 20), axis.title.x = element_text(size = 20), axis.title.y = element_text(size = 20)) +
  theme_classic()
print(Plot_ius_btremoved)
## `geom_smooth()` using formula = 'y ~ x'

ggsave(plot=Plot_ius_btremoved, 'Plot_ius_btremoved.png',
       width=7, height=4,
       dpi=500)
## `geom_smooth()` using formula = 'y ~ x'

Cognitive IU with Functional Impairment

Plot_ius_fi <- ggplot(data = Full_data, aes(x = A_PRE_IUS_total, y = A_PRE_FI_total)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", color = "black") +
  scale_x_continuous(name = "Baseline Intolerance of Uncertainty (IUS-12)") +
  scale_y_continuous(name = "Baseline Functional Impairment") +
  coord_cartesian(xlim = c(12, 60), ylim = c(0, 20)) +
  theme(text = element_text(size = 20), axis.text = element_text(size = 20), axis.title.x = element_text(size = 20), axis.title.y = element_text(size = 20)) +
  theme_classic()
print(Plot_ius_fi)
## `geom_smooth()` using formula = 'y ~ x'

ggsave(plot=Plot_ius_fi, 'IUS_FI.png',
       width=7, height=4,
       dpi=500)
## `geom_smooth()` using formula = 'y ~ x'

Correlations

cor.test(BT_removed$A_PRE_IUS_total, BT_removed$A_PRE_samples, method="pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  BT_removed$A_PRE_IUS_total and BT_removed$A_PRE_samples
## t = -3.0031, df = 171, p-value = 0.003074
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.36096987 -0.07720195
## sample estimates:
##        cor 
## -0.2238241
cor.test(Full_data$A_PRE_IUS_total, Full_data$A_PRE_PHQ_total, method="pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  Full_data$A_PRE_IUS_total and Full_data$A_PRE_PHQ_total
## t = 8.0215, df = 257, p-value = 3.716e-14
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3443686 0.5399152
## sample estimates:
##       cor 
## 0.4474747
cor.test(Full_data$A_PRE_IUS_total, Full_data$A_PRE_GAD_total, method="pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  Full_data$A_PRE_IUS_total and Full_data$A_PRE_GAD_total
## t = 9.5802, df = 257, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4171735 0.5975068
## sample estimates:
##       cor 
## 0.5129779
cor.test(Full_data$A_PRE_IUS_total, Full_data$A_PRE_FI_total, method="pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  Full_data$A_PRE_IUS_total and Full_data$A_PRE_FI_total
## t = 11.26, df = 257, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4870121 0.6510571
## sample estimates:
##       cor 
## 0.5747811

Hypothesis 2

Intolerance of Uncertainty

IUS_alltimepoints <- Full_data %>%
  dplyr::select("A_PRE_IUS_total", "B_POST_IUS_total", "C_W1_IUS_total", "D_M1_IUS_total", "Group") %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total, C_W1_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_rain <- IUS_alltimepoints %>% 
  mutate(Time=case_when(
    Time == "A_PRE_IUS_total" ~ "Baseline",
    Time == "B_POST_IUS_total" ~ "Post",
    Time == "C_W1_IUS_total" ~ "1 Week",
    Time == "D_M1_IUS_total" ~ "1 Month"
  )) %>%
  mutate(Time=factor(Time, levels=c("Baseline", "Post", "1 Week", "1 Month"))) %>%
  ggplot(mapping = aes(x = Group, y = IUS_Score, fill = Time)) +
  ggdist::stat_halfeye(aes(fill = Time), position = position_nudge(x = 0.1, y = 0),
                       adjust = 0.5, width = 0.45, .width = 0, justification = -0.2,
                       trim = FALSE, alpha = .5, colour = NA) +
  gghalves::geom_half_point(aes(colour = Time), side = "l", position = position_jitternudge(x=-0.1,width = 0.001), range_scale = 0.4, alpha = 0.5) +
  geom_boxplot(width = 0.2, outlier.shape = NA, alpha = 0.5, position = position_dodge(width = 0.3), fatten=NULL) +
   stat_summary(fun = mean, geom = "errorbar", aes(ymax = ..y.., ymin = ..y..),
               width = 0.2, size = 1, linetype = "solid",
               position = position_dodge (width = .3))   +
  scale_x_discrete(name = "Group", labels = paste(c("Non-Active Control", "Psychoeducation Control", "Mindset Intervention"))) +
  scale_y_continuous(name = "Intolerance of Uncertainty (IUS-12)") +
  scale_color_manual(values = c("#4682B4", "#7ecf97", "#fba863", "#af5f90")) +
  scale_fill_manual (values = c("#4682B4", "#7ecf97", "#fba863", "#af5f90")) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_line(colour = "black"))
  
IUS_rain

ggsave(plot=IUS_rain, 'IUS_rain.png',
       width=8, height=4,
       dpi=500)

Behavioural IU

Excluding NS

BT_BP_removed <- BT_data %>% 
  filter(A_PRE_samples != "0") %>% # only excluding from PRE
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
BT_BP_long_removed <- BT_BP_removed %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score") %>% 
   mutate(Time = recode(Time, "A_PRE_samples"=1,"B_POST_samples"=2))
BT_mem_r <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long_removed, REML = TRUE)

BT_mem_plot_r <- interact_plot(BT_mem_r, pred = Time, modx = Group, modx.values = c("A_ECs", "B_Controls", "C_Intervention"), interval = TRUE, x.label = "Time", y.label = "Behavioural Intolerance of Uncertainty", main.title = "",legend.main = "Group", colors = NULL) +
  theme(text = element_text(size = 20), axis.text = element_text(size = 20), axis.title.x = element_text(size = 20), axis.title.y = element_text(size = 20)) +
  theme_classic() +
  coord_cartesian(ylim = c(0, 35))

BT_mem_plot_r

ggsave(plot=BT_mem_plot_r, 'BT_mem_plot_r.png',
       width=7, height=4,
       dpi=500)

Including NS

BT_BP <- BT_data %>%
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
BT_BP_long <- BT_BP %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score") %>% 
   mutate(Time = recode(Time, "A_PRE_samples"=1,"B_POST_samples"=2))
BT_mem <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long, REML = TRUE)

BT_mem_plot <- interact_plot(BT_mem, pred = Time, modx = Group, modx.values = c("A_ECs", "B_Controls", "C_Intervention"), interval = TRUE, x.label = "Time", y.label = "Behavioural Intolerance of Uncertainty", main.title = "",legend.main = "Group", colors = NULL) +
  theme(text = element_text(size = 20), axis.text = element_text(size = 20), axis.title.x = element_text(size = 20), axis.title.y = element_text(size = 20)) +
  theme_classic() + 
  coord_cartesian(ylim = c(0, 35))

BT_mem_plot

ggsave(plot=BT_mem_plot, 'BT_mem_plot.png',
       width=7, height=4,
       dpi=500)

Growth Mindsets

GM_alltimepoints <- Full_data %>%
  dplyr::select("A_PRE_GM", "B_POST_GM", "C_W1_GM", "D_M1_GM", "Group") %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM, C_W1_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_rain <- GM_alltimepoints %>% 
  mutate(Time=case_when(
    Time == "A_PRE_GM" ~ "Baseline",
    Time == "B_POST_GM" ~ "Post",
    Time == "C_W1_GM" ~ "1 Week",
    Time == "D_M1_GM" ~ "1 Month"
  )) %>%
  mutate(Time=factor(Time, levels=c("Baseline", "Post", "1 Week", "1 Month"))) %>%
  ggplot(mapping = aes(x = Group, y = GM_Score, fill = Time)) +
  ggdist::stat_halfeye(aes(fill = Time), position = position_nudge(x = .1, y = 0),
                       adjust = 0.5, width = 0.45, .width = 0, justification = -0.2,
                       trim = FALSE, alpha = .5, colour = NA) +
  gghalves::geom_half_point(aes(colour = Time), side = "l", position = position_jitternudge(x=-.1,width = 0.001), range_scale = 0.4, alpha = 0.5) +
  geom_boxplot(width = 0.2, outlier.shape = NA, alpha = 0.5, position = position_dodge (width = .3), fatten=NULL) +
   stat_summary(fun = mean, geom = "errorbar", aes(ymax = ..y.., ymin = ..y..),
               width = 0.2, size = 1, linetype = "solid",
               position = position_dodge (width = .3))   +
  scale_x_discrete(name = "Group", labels = paste(c("Non-Active Control", "Psychoeducation Control", "Mindset Intervention"))) +
  scale_y_continuous(name = "Fixed Mindsets") +
  scale_color_manual(values = c("#4682B4", "#7ecf97", "#fba863", "#af5f90")) +
  scale_fill_manual (values = c("#4682B4", "#7ecf97", "#fba863", "#af5f90")) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_line(colour = "black"))
  
GM_rain

ggsave(plot=GM_rain, 'GM_rain.png',
       width=8, height=4,
       dpi=500)

Depression

PHQ_alltimepoints <- Full_data %>%
  dplyr::select("A_PRE_PHQ_total", "C_W1_PHQ_total", "D_M1_PHQ_total", "Group") %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_rain <- PHQ_alltimepoints %>% 
  mutate(Time=case_when(
    Time == "A_PRE_PHQ_total" ~ "Baseline",
    Time == "B_POST_PHQ_total" ~ "Post",
    Time == "C_W1_PHQ_total" ~ "1 Week",
    Time == "D_M1_PHQ_total" ~ "1 Month"
  )) %>%
  mutate(Time=factor(Time, levels=c("Baseline", "Post", "1 Week", "1 Month"))) %>%
  ggplot(mapping = aes(x = Group, y = PHQ_Score, fill = Time)) +
  ggdist::stat_halfeye(aes(fill = Time), position = position_nudge(x = .1, y = 0),
                       adjust = 0.5, width = 0.45, .width = 0, justification = -0.2,
                       trim = FALSE, alpha = .5, colour = NA) +
  gghalves::geom_half_point(aes(colour = Time), side = "l", position = position_jitternudge(x=-.1,width = 0.001), range_scale = 0.4, alpha = 0.5) +
  geom_boxplot(width = 0.2, outlier.shape = NA, alpha = 0.5, position = position_dodge (width = .3), fatten=NULL) +
   stat_summary(fun = mean, geom = "errorbar", aes(ymax = ..y.., ymin = ..y..),
               width = 0.2, size = 1, linetype = "solid",
               position = position_dodge (width = .3))   +
  scale_x_discrete(name = "Group", labels = paste(c("Non-Active Control", "Psychoeducation Control", "Mindset Intervention"))) +
  scale_y_continuous(name = "Depression Symptoms (PHQ-8)") +
  scale_color_manual(values = c("#4682B4", "#fba863", "#af5f90")) +
  scale_fill_manual (values = c("#4682B4", "#fba863", "#af5f90")) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_line(colour = "black"))
  
PHQ_rain

ggsave(plot=PHQ_rain, 'PHQ_rain.png',
       width=8, height=4,
       dpi=500)

Anxiety

GAD_alltimepoints <- Full_data %>%
  dplyr::select("A_PRE_GAD_total", "C_W1_GAD_total", "D_M1_GAD_total", "Group") %>%
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_rain <- GAD_alltimepoints %>% 
  mutate(Time=case_when(
    Time == "A_PRE_GAD_total" ~ "Baseline",
    Time == "B_POST_GAD_total" ~ "Post",
    Time == "C_W1_GAD_total" ~ "1 Week",
    Time == "D_M1_GAD_total" ~ "1 Month"
  )) %>%
  mutate(Time=factor(Time, levels=c("Baseline", "Post", "1 Week", "1 Month"))) %>%
  ggplot(mapping = aes(x = Group, y = GAD_Score, fill = Time)) +
  ggdist::stat_halfeye(aes(fill = Time), position = position_nudge(x = .1, y = 0),
                       adjust = 0.5, width = 0.45, .width = 0, justification = -0.2,
                       trim = FALSE, alpha = .5, colour = NA) +
  gghalves::geom_half_point(aes(colour = Time), side = "l", position = position_jitternudge(x=-.1,width = 0.001), range_scale = 0.4, alpha = 0.5) +
  geom_boxplot(width = 0.2, outlier.shape = NA, alpha = 0.5, position = position_dodge (width = .3), fatten=NULL) +
   stat_summary(fun = mean, geom = "errorbar", aes(ymax = ..y.., ymin = ..y..),
               width = 0.2, size = 1, linetype = "solid",
               position = position_dodge (width = .3))   +
  scale_x_discrete(name = "Group", labels = paste(c("Non-Active Control", "Psychoeducation Control", " Mindset Intervention"))) +
  scale_y_continuous(name = "Anxiety Symptoms (GAD-7)") +
  scale_color_manual(values = c("#4682B4", "#fba863", "#af5f90")) +
  scale_fill_manual (values = c("#4682B4", "#fba863", "#af5f90")) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_line(colour = "black"))
  
GAD_rain

ggsave(plot=GAD_rain, 'GAD_rain.png',
       width=8, height=4,
       dpi=500)

Functional Impairment

FI_alltimepoints <- Full_data %>%
  dplyr::select("A_PRE_FI_total", "C_W1_FI_total", "D_M1_FI_total", "Group") %>%
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total, D_M1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_rain <- FI_alltimepoints %>% 
  mutate(Time=case_when(
    Time == "A_PRE_FI_total" ~ "Baseline",
    Time == "B_POST_FI_total" ~ "Post",
    Time == "C_W1_FI_total" ~ "1 Week",
    Time == "D_M1_FI_total" ~ "1 Month"
  )) %>%
  mutate(Time=factor(Time, levels=c("Baseline", "Post", "1 Week", "1 Month"))) %>%
  ggplot(mapping = aes(x = Group, y = FI_Score, fill = Time)) +
  ggdist::stat_halfeye(aes(fill = Time), position = position_nudge(x = .1, y = 0),
                       adjust = 0.5, width = 0.45, .width = 0, justification = -0.2,
                       trim = FALSE, alpha = .5, colour = NA) +
  gghalves::geom_half_point(aes(colour = Time), side = "l", position = position_jitternudge(x=-.1,width = 0.001), range_scale = 0.4, alpha = 0.5) +
  geom_boxplot(width = 0.2, outlier.shape = NA, alpha = 0.5, position = position_dodge (width = .3), fatten=NULL) +
   stat_summary(fun = mean, geom = "errorbar", aes(ymax = ..y.., ymin = ..y..),
               width = 0.2, size = 1, linetype = "solid",
               position = position_dodge (width = .3))   +
  scale_x_discrete(name = "Group", labels = paste(c("Non-Active Control", "Psychoeducation Control", "Mindset Intervention"))) +
  scale_y_continuous(name = "Functional Impairment") +
  scale_color_manual(values = c("#4682B4", "#fba863", "#af5f90")) +
  scale_fill_manual (values = c("#4682B4", "#fba863", "#af5f90")) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_line(colour = "black"))
  
FI_rain

ggsave(plot=FI_rain, 'FI_rain.png',
       width=8, height=4,
       dpi=500)

Method Analyses

Internal consistency

# Creating dataframes for each questionnaire
PRE_IUS_responses <- Full_data %>% 
  dplyr::select(B_IUS_1, B_IUS_2, B_IUS_3, B_IUS_4, B_IUS_5, B_IUS_6, B_IUS_7, B_IUS_8, B_IUS_9, B_IUS_10, B_IUS_11, B_IUS_12)
PRE_FI_responses <- Full_data %>% 
  dplyr::select(c(B_FI_1r, B_FI_2r, B_FI_3r, B_FI_4r, B_FI_5r))
PRE_PHQ_responses <- Full_data %>% 
  dplyr::select(c(B_PHQ_1r, B_PHQ_2r, B_PHQ_3r, B_PHQ_4r, B_PHQ_5r, B_PHQ_6r, B_PHQ_7r, B_PHQ_8r))
PRE_GAD_responses <- Full_data %>% 
  dplyr::select(c(B_GAD_1r, B_GAD_2r, B_GAD_3r, B_GAD_4r, B_GAD_5r, B_GAD_6r, B_GAD_7r))

POST_IUS_responses <- Full_data %>% 
  dplyr::select(c(POST_IUS_1, POST_IUS_2, POST_IUS_3, POST_IUS_4, POST_IUS_5, POST_IUS_6, POST_IUS_7, POST_IUS_8, POST_IUS_9, POST_IUS_10, POST_IUS_11, POST_IUS_12))

W1_IUS_responses <- Full_data %>% 
  dplyr::select(c(W1_IUS_1, W1_IUS_2, W1_IUS_3, W1_IUS_4, W1_IUS_5, W1_IUS_6, W1_IUS_7, W1_IUS_8, W1_IUS_9, W1_IUS_10, W1_IUS_11, W1_IUS_12))
W1_FI_responses <- Full_data %>% 
  dplyr::select(c(W1_FI_1r, W1_FI_2r, W1_FI_3r, W1_FI_4r, W1_FI_5r))
W1_PHQ_responses <- Full_data %>% 
  dplyr::select(c(W1_PHQ_1r, W1_PHQ_2r, W1_PHQ_3r, W1_PHQ_4r, W1_PHQ_5r, W1_PHQ_6r, W1_PHQ_7r, W1_PHQ_8r))
W1_GAD_responses <- Full_data %>% 
  dplyr::select(c(W1_GAD_1r, W1_GAD_2r, W1_GAD_3r, W1_GAD_4r, W1_GAD_5r, W1_GAD_6r, W1_GAD_7r))

M1_IUS_responses <- Full_data %>% 
  dplyr::select(c(M1_IUS_1, M1_IUS_2, M1_IUS_3, M1_IUS_4, M1_IUS_5, M1_IUS_6, M1_IUS_7, M1_IUS_8, M1_IUS_9, M1_IUS_10, M1_IUS_11, M1_IUS_12))
M1_FI_responses <- Full_data %>% 
  dplyr::select(c(M1_FI_1r, M1_FI_2r, M1_FI_3r, M1_FI_4r, M1_FI_5r))
M1_PHQ_responses <- Full_data %>% 
  dplyr::select(c(M1_PHQ_1r, M1_PHQ_2r, M1_PHQ_3r, M1_PHQ_4r, M1_PHQ_5r, M1_PHQ_6r, M1_PHQ_7r, M1_PHQ_8r))
M1_GAD_responses <- Full_data %>% 
  dplyr::select(c(M1_GAD_1r, M1_GAD_2r, M1_GAD_3r, M1_GAD_4r, M1_GAD_5r, M1_GAD_6r, M1_GAD_7r))

Acceptability_responses <- Acceptability_numeric %>% 
  filter(Group != "A_ECs") %>% 
  dplyr::select(c(B_acceptability_understandable, B_acceptability_useful, B_acceptability_recommend))

Baseline

omega(PRE_IUS_responses) # omega total = 0.89
## Loading required namespace: GPArotation

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.87 
## G.6:                   0.87 
## Omega Hierarchical:    0.7 
## Omega H asymptotic:    0.78 
## Omega Total            0.89 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##             g   F1*   F2*   F3*   h2   u2   p2
## B_IUS_1  0.65              0.55 0.73 0.27 0.58
## B_IUS_2  0.53              0.34 0.40 0.60 0.69
## B_IUS_3  0.53  0.27             0.36 0.64 0.78
## B_IUS_4  0.37        0.41       0.31 0.69 0.46
## B_IUS_5  0.51                   0.34 0.66 0.78
## B_IUS_6  0.63  0.39             0.56 0.44 0.71
## B_IUS_7  0.70  0.43             0.68 0.32 0.73
## B_IUS_8  0.41        0.47       0.40 0.60 0.42
## B_IUS_9  0.56        0.31       0.44 0.56 0.72
## B_IUS_10 0.60  0.28             0.45 0.55 0.80
## B_IUS_11 0.40        0.53       0.44 0.56 0.35
## B_IUS_12 0.53        0.45       0.51 0.49 0.55
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 3.56 0.54 1.02 0.49 
## 
## general/max  3.47   max/min =   2.1
## mean percent general =  0.63    with sd =  0.15 and cv of  0.24 
## Explained Common Variance of the general factor =  0.63 
## 
## The degrees of freedom are 33  and the fit is  0.15 
## The number of observations was  259  with Chi Square =  37.19  with prob <  0.28
## The root mean square of the residuals is  0.03 
## The df corrected root mean square of the residuals is  0.04
## RMSEA index =  0.022  and the 10 % confidence intervals are  0 0.052
## BIC =  -146.18
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 54  and the fit is  0.73 
## The number of observations was  259  with Chi Square =  183.64  with prob <  5e-16
## The root mean square of the residuals is  0.1 
## The df corrected root mean square of the residuals is  0.11 
## 
## RMSEA index =  0.096  and the 10 % confidence intervals are  0.081 0.112
## BIC =  -116.43 
## 
## Measures of factor score adequacy             
##                                                  g   F1*  F2*   F3*
## Correlation of scores with factors            0.86  0.57 0.74  0.67
## Multiple R square of scores with factors      0.74  0.32 0.54  0.44
## Minimum correlation of factor score estimates 0.48 -0.36 0.09 -0.11
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.89 0.80 0.78 0.71
## Omega general for total scores and subscales  0.70 0.61 0.45 0.45
## Omega group for total scores and subscales    0.14 0.19 0.33 0.26
omega(PRE_FI_responses) # omega total = 0.75
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect.  Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected.  Examine the results carefully
## Warning in cov2cor(t(w) %*% r %*% w): diag(.) had 0 or NA entries; non-finite
## result is doubtful

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.68 
## G.6:                   0.66 
## Omega Hierarchical:    0.56 
## Omega H asymptotic:    0.74 
## Omega Total            0.75 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##            g   F1* F2*   F3*   h2   u2   p2
## B_FI_1r 0.70                 0.50 0.50 0.99
## B_FI_2r 0.30            0.32 0.21 0.79 0.44
## B_FI_3r 0.43  0.53           0.47 0.53 0.40
## B_FI_4r 0.45  0.70           0.69 0.31 0.29
## B_FI_5r 0.59                 0.38 0.62 0.93
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 1.33 0.80 0.00 0.13 
## 
## general/max  1.65   max/min =   Inf
## mean percent general =  0.61    with sd =  0.32 and cv of  0.53 
## Explained Common Variance of the general factor =  0.59 
## 
## The degrees of freedom are -2  and the fit is  0 
## The number of observations was  259  with Chi Square =  0  with prob <  NA
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  NA
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5  and the fit is  0.23 
## The number of observations was  259  with Chi Square =  59.63  with prob <  1.4e-11
## The root mean square of the residuals is  0.13 
## The df corrected root mean square of the residuals is  0.18 
## 
## RMSEA index =  0.205  and the 10 % confidence intervals are  0.161 0.254
## BIC =  31.85 
## 
## Measures of factor score adequacy             
##                                                  g  F1* F2*   F3*
## Correlation of scores with factors            0.81 0.78   0  0.39
## Multiple R square of scores with factors      0.65 0.61   0  0.15
## Minimum correlation of factor score estimates 0.31 0.21  -1 -0.70
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1* F2*  F3*
## Omega total for total scores and subscales    0.75 0.73  NA 0.57
## Omega general for total scores and subscales  0.56 0.25  NA 0.56
## Omega group for total scores and subscales    0.14 0.48  NA 0.01
omega(PRE_PHQ_responses) # omega total = 0.88

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.84 
## G.6:                   0.84 
## Omega Hierarchical:    0.73 
## Omega H asymptotic:    0.83 
## Omega Total            0.88 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##             g   F1*   F2*   F3*   h2   u2   p2
## B_PHQ_1r 0.61                   0.41 0.59 0.92
## B_PHQ_2r 0.79  0.24             0.69 0.31 0.90
## B_PHQ_3r 0.59        0.69       0.83 0.17 0.42
## B_PHQ_4r 0.54        0.24  0.25 0.41 0.59 0.70
## B_PHQ_5r 0.44        0.26  0.20 0.30 0.70 0.64
## B_PHQ_6r 0.72  0.21             0.58 0.42 0.89
## B_PHQ_7r 0.50              0.64 0.65 0.35 0.38
## B_PHQ_8r 0.50              0.30 0.34 0.66 0.72
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 2.85 0.13 0.62 0.63 
## 
## general/max  4.53   max/min =   4.76
## mean percent general =  0.7    with sd =  0.21 and cv of  0.3 
## Explained Common Variance of the general factor =  0.67 
## 
## The degrees of freedom are 7  and the fit is  0.07 
## The number of observations was  259  with Chi Square =  17.89  with prob <  0.012
## The root mean square of the residuals is  0.02 
## The df corrected root mean square of the residuals is  0.05
## RMSEA index =  0.077  and the 10 % confidence intervals are  0.034 0.123
## BIC =  -21
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 20  and the fit is  0.34 
## The number of observations was  259  with Chi Square =  85.09  with prob <  5.3e-10
## The root mean square of the residuals is  0.09 
## The df corrected root mean square of the residuals is  0.1 
## 
## RMSEA index =  0.112  and the 10 % confidence intervals are  0.088 0.137
## BIC =  -26.05 
## 
## Measures of factor score adequacy             
##                                                  g   F1*  F2*  F3*
## Correlation of scores with factors            0.89  0.31 0.81 0.74
## Multiple R square of scores with factors      0.79  0.10 0.66 0.55
## Minimum correlation of factor score estimates 0.59 -0.80 0.32 0.09
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.88 0.79 0.68 0.70
## Omega general for total scores and subscales  0.73 0.73 0.37 0.44
## Omega group for total scores and subscales    0.09 0.06 0.31 0.26
omega(PRE_GAD_responses) # omega total = 0.91

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.88 
## G.6:                   0.87 
## Omega Hierarchical:    0.81 
## Omega H asymptotic:    0.89 
## Omega Total            0.91 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##             g   F1*   F2*   F3*   h2   u2   p2
## B_GAD_1r 0.65  0.24             0.48 0.52 0.88
## B_GAD_2r 0.80  0.29             0.72 0.28 0.88
## B_GAD_3r 0.78  0.29             0.69 0.31 0.88
## B_GAD_4r 0.76        0.30       0.69 0.31 0.84
## B_GAD_5r 0.58        0.45       0.55 0.45 0.62
## B_GAD_6r 0.57              0.82 1.00 0.00 0.32
## B_GAD_7r 0.63                   0.45 0.55 0.89
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 3.31 0.27 0.32 0.68 
## 
## general/max  4.89   max/min =   2.54
## mean percent general =  0.76    with sd =  0.22 and cv of  0.28 
## Explained Common Variance of the general factor =  0.72 
## 
## The degrees of freedom are 3  and the fit is  0 
## The number of observations was  259  with Chi Square =  0.57  with prob <  0.9
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  0.01
## RMSEA index =  0  and the 10 % confidence intervals are  0 0.044
## BIC =  -16.1
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 14  and the fit is  0.13 
## The number of observations was  259  with Chi Square =  32.43  with prob <  0.0035
## The root mean square of the residuals is  0.05 
## The df corrected root mean square of the residuals is  0.06 
## 
## RMSEA index =  0.071  and the 10 % confidence intervals are  0.039 0.104
## BIC =  -45.37 
## 
## Measures of factor score adequacy             
##                                                  g   F1*   F2*  F3*
## Correlation of scores with factors            0.91  0.40  0.60 0.95
## Multiple R square of scores with factors      0.83  0.16  0.36 0.91
## Minimum correlation of factor score estimates 0.65 -0.67 -0.29 0.82
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.91 0.84 0.77 0.99
## Omega general for total scores and subscales  0.81 0.74 0.64 0.32
## Omega group for total scores and subscales    0.08 0.10 0.14 0.67

Post

omega(POST_IUS_responses) # omega total = 0.94

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.92 
## G.6:                   0.93 
## Omega Hierarchical:    0.78 
## Omega H asymptotic:    0.83 
## Omega Total            0.94 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##                g   F1*   F2*   F3*   h2   u2   p2
## POST_IUS_1  0.81              0.43 0.84 0.16 0.77
## POST_IUS_2  0.67              0.28 0.56 0.44 0.81
## POST_IUS_3  0.68  0.32             0.56 0.44 0.82
## POST_IUS_4  0.53        0.46       0.51 0.49 0.56
## POST_IUS_5  0.64  0.21  0.21       0.50 0.50 0.81
## POST_IUS_6  0.71  0.39             0.67 0.33 0.76
## POST_IUS_7  0.77  0.40             0.76 0.24 0.79
## POST_IUS_8  0.51        0.44       0.49 0.51 0.54
## POST_IUS_9  0.70  0.20  0.27       0.61 0.39 0.80
## POST_IUS_10 0.71  0.36             0.63 0.37 0.79
## POST_IUS_11 0.45        0.62       0.59 0.41 0.34
## POST_IUS_12 0.58  0.23  0.36       0.52 0.48 0.65
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 5.15 0.69 1.08 0.33 
## 
## general/max  4.77   max/min =   3.27
## mean percent general =  0.7    with sd =  0.15 and cv of  0.21 
## Explained Common Variance of the general factor =  0.71 
## 
## The degrees of freedom are 33  and the fit is  0.09 
## The number of observations was  259  with Chi Square =  22.01  with prob <  0.93
## The root mean square of the residuals is  0.02 
## The df corrected root mean square of the residuals is  0.02
## RMSEA index =  0  and the 10 % confidence intervals are  0 0.015
## BIC =  -161.36
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 54  and the fit is  0.96 
## The number of observations was  259  with Chi Square =  242.4  with prob <  1.1e-25
## The root mean square of the residuals is  0.11 
## The df corrected root mean square of the residuals is  0.12 
## 
## RMSEA index =  0.116  and the 10 % confidence intervals are  0.102 0.131
## BIC =  -57.67 
## 
## Measures of factor score adequacy             
##                                                  g   F1*  F2*   F3*
## Correlation of scores with factors            0.91  0.60 0.80  0.62
## Multiple R square of scores with factors      0.82  0.35 0.63  0.39
## Minimum correlation of factor score estimates 0.64 -0.29 0.27 -0.22
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.94 0.89 0.83 0.81
## Omega general for total scores and subscales  0.78 0.72 0.52 0.66
## Omega group for total scores and subscales    0.10 0.17 0.31 0.15

1 Week

omega(W1_IUS_responses) # omega total = 0.93

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.91 
## G.6:                   0.91 
## Omega Hierarchical:    0.71 
## Omega H asymptotic:    0.77 
## Omega Total            0.93 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##              g   F1*   F2*   F3*   h2   u2   p2
## W1_IUS_1  0.68  0.33             0.62 0.38 0.76
## W1_IUS_2  0.71              0.71 1.00 0.00 0.50
## W1_IUS_3  0.56  0.38             0.46 0.54 0.67
## W1_IUS_4  0.54        0.43       0.48 0.52 0.62
## W1_IUS_5  0.49  0.36             0.38 0.62 0.63
## W1_IUS_6  0.60  0.58             0.70 0.30 0.52
## W1_IUS_7  0.61  0.51             0.64 0.36 0.58
## W1_IUS_8  0.57        0.43       0.51 0.49 0.63
## W1_IUS_9  0.58  0.29  0.26       0.50 0.50 0.68
## W1_IUS_10 0.60  0.52             0.63 0.37 0.57
## W1_IUS_11 0.59        0.47       0.57 0.43 0.61
## W1_IUS_12 0.57        0.32       0.47 0.53 0.70
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 4.25 1.37 0.81 0.53 
## 
## general/max  3.09   max/min =   2.58
## mean percent general =  0.62    with sd =  0.07 and cv of  0.12 
## Explained Common Variance of the general factor =  0.61 
## 
## The degrees of freedom are 33  and the fit is  0.21 
## The number of observations was  259  with Chi Square =  53.03  with prob <  0.015
## The root mean square of the residuals is  0.03 
## The df corrected root mean square of the residuals is  0.04
## RMSEA index =  0.048  and the 10 % confidence intervals are  0.022 0.072
## BIC =  -130.35
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 54  and the fit is  1.25 
## The number of observations was  259  with Chi Square =  314.4  with prob <  2e-38
## The root mean square of the residuals is  0.13 
## The df corrected root mean square of the residuals is  0.14 
## 
## RMSEA index =  0.136  and the 10 % confidence intervals are  0.122 0.152
## BIC =  14.34 
## 
## Measures of factor score adequacy             
##                                                  g  F1*   F2*  F3*
## Correlation of scores with factors            0.86 0.75  0.68 0.87
## Multiple R square of scores with factors      0.75 0.56  0.47 0.76
## Minimum correlation of factor score estimates 0.49 0.12 -0.07 0.52
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2* F3*
## Omega total for total scores and subscales    0.93 0.88 0.79 1.0
## Omega general for total scores and subscales  0.71 0.58 0.52 0.5
## Omega group for total scores and subscales    0.17 0.30 0.27 0.5
omega(W1_FI_responses) # omega total = 0.80
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect.  Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected.  Examine the results carefully
## Warning in cov2cor(t(w) %*% r %*% w): diag(.) had 0 or NA entries; non-finite
## result is doubtful

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.72 
## G.6:                   0.7 
## Omega Hierarchical:    0.62 
## Omega H asymptotic:    0.77 
## Omega Total            0.8 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##             g   F1* F2*   F3*   h2   u2   p2
## W1_FI_1r 0.85                 0.73 0.27 1.00
## W1_FI_2r 0.33            0.49 0.36 0.64 0.31
## W1_FI_3r 0.36  0.68           0.59 0.41 0.22
## W1_FI_4r 0.53  0.48           0.55 0.45 0.52
## W1_FI_5r 0.62  0.20           0.44 0.56 0.89
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 1.64 0.75 0.00 0.28 
## 
## general/max  2.19   max/min =   Inf
## mean percent general =  0.59    with sd =  0.35 and cv of  0.59 
## Explained Common Variance of the general factor =  0.62 
## 
## The degrees of freedom are -2  and the fit is  0 
## The number of observations was  259  with Chi Square =  0  with prob <  NA
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  NA
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5  and the fit is  0.23 
## The number of observations was  259  with Chi Square =  58.67  with prob <  2.3e-11
## The root mean square of the residuals is  0.12 
## The df corrected root mean square of the residuals is  0.17 
## 
## RMSEA index =  0.204  and the 10 % confidence intervals are  0.159 0.252
## BIC =  30.88 
## 
## Measures of factor score adequacy             
##                                                  g  F1* F2*   F3*
## Correlation of scores with factors            0.89 0.77   0  0.56
## Multiple R square of scores with factors      0.79 0.59   0  0.31
## Minimum correlation of factor score estimates 0.59 0.18  -1 -0.38
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1* F2*  F3*
## Omega total for total scores and subscales    0.80 0.74  NA 0.64
## Omega general for total scores and subscales  0.62 0.41  NA 0.53
## Omega group for total scores and subscales    0.18 0.33  NA 0.12
omega(W1_PHQ_responses) # omega total = 0.89

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.86 
## G.6:                   0.86 
## Omega Hierarchical:    0.74 
## Omega H asymptotic:    0.83 
## Omega Total            0.89 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##              g   F1*   F2*   F3*   h2   u2   p2
## W1_PHQ_1r 0.63  0.34             0.52 0.48 0.77
## W1_PHQ_2r 0.74  0.44             0.75 0.25 0.74
## W1_PHQ_3r 0.65        0.50       0.67 0.33 0.63
## W1_PHQ_4r 0.64        0.37       0.55 0.45 0.73
## W1_PHQ_5r 0.54        0.21       0.36 0.64 0.82
## W1_PHQ_6r 0.63  0.35             0.54 0.46 0.75
## W1_PHQ_7r 0.57              0.75 0.88 0.12 0.36
## W1_PHQ_8r 0.45              0.35 0.33 0.67 0.60
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 3.00 0.46 0.43 0.72 
## 
## general/max  4.17   max/min =   1.68
## mean percent general =  0.68    with sd =  0.15 and cv of  0.22 
## Explained Common Variance of the general factor =  0.65 
## 
## The degrees of freedom are 7  and the fit is  0.03 
## The number of observations was  259  with Chi Square =  6.51  with prob <  0.48
## The root mean square of the residuals is  0.02 
## The df corrected root mean square of the residuals is  0.03
## RMSEA index =  0  and the 10 % confidence intervals are  0 0.073
## BIC =  -32.39
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 20  and the fit is  0.42 
## The number of observations was  259  with Chi Square =  106.89  with prob <  7.2e-14
## The root mean square of the residuals is  0.09 
## The df corrected root mean square of the residuals is  0.11 
## 
## RMSEA index =  0.129  and the 10 % confidence intervals are  0.106 0.154
## BIC =  -4.24 
## 
## Measures of factor score adequacy             
##                                                  g   F1*   F2*  F3*
## Correlation of scores with factors            0.87  0.58  0.62 0.86
## Multiple R square of scores with factors      0.76  0.33  0.39 0.74
## Minimum correlation of factor score estimates 0.53 -0.34 -0.22 0.48
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.89 0.81 0.76 0.74
## Omega general for total scores and subscales  0.74 0.62 0.56 0.34
## Omega group for total scores and subscales    0.11 0.19 0.19 0.40
omega(W1_GAD_responses) # omega total = 0.92

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.9 
## G.6:                   0.89 
## Omega Hierarchical:    0.83 
## Omega H asymptotic:    0.9 
## Omega Total            0.92 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##              g   F1*   F2*   F3*   h2   u2   p2
## W1_GAD_1r 0.71  0.20             0.57 0.43 0.89
## W1_GAD_2r 0.77  0.41             0.76 0.24 0.78
## W1_GAD_3r 0.77  0.36             0.73 0.27 0.82
## W1_GAD_4r 0.82              0.57 1.00 0.00 0.68
## W1_GAD_5r 0.58        0.20       0.40 0.60 0.85
## W1_GAD_6r 0.66        0.38       0.58 0.42 0.75
## W1_GAD_7r 0.70        0.22       0.55 0.45 0.89
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 3.64 0.34 0.25 0.35 
## 
## general/max  10.28   max/min =   1.43
## mean percent general =  0.81    with sd =  0.08 and cv of  0.1 
## Explained Common Variance of the general factor =  0.79 
## 
## The degrees of freedom are 3  and the fit is  0 
## The number of observations was  259  with Chi Square =  0.81  with prob <  0.85
## The root mean square of the residuals is  0.01 
## The df corrected root mean square of the residuals is  0.01
## RMSEA index =  0  and the 10 % confidence intervals are  0 0.058
## BIC =  -15.86
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 14  and the fit is  0.19 
## The number of observations was  259  with Chi Square =  47.58  with prob <  1.5e-05
## The root mean square of the residuals is  0.06 
## The df corrected root mean square of the residuals is  0.07 
## 
## RMSEA index =  0.096  and the 10 % confidence intervals are  0.067 0.127
## BIC =  -30.22 
## 
## Measures of factor score adequacy             
##                                                  g   F1*   F2*  F3*
## Correlation of scores with factors            0.92  0.59  0.53 0.83
## Multiple R square of scores with factors      0.85  0.35  0.28 0.68
## Minimum correlation of factor score estimates 0.70 -0.30 -0.44 0.37
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.92 0.86 0.74 1.00
## Omega general for total scores and subscales  0.83 0.73 0.64 0.67
## Omega group for total scores and subscales    0.06 0.13 0.11 0.32

1 Month

omega(M1_IUS_responses) # omega total = 0.93

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.9 
## G.6:                   0.91 
## Omega Hierarchical:    0.68 
## Omega H asymptotic:    0.73 
## Omega Total            0.93 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##              g   F1*   F2*   F3*   h2   u2   p2
## M1_IUS_1  0.64  0.28        0.22 0.55 0.45 0.75
## M1_IUS_2  0.71              0.62 0.89 0.11 0.57
## M1_IUS_3  0.56  0.48             0.54 0.46 0.58
## M1_IUS_4  0.49        0.53       0.52 0.48 0.46
## M1_IUS_5  0.51  0.28             0.37 0.63 0.72
## M1_IUS_6  0.57  0.60             0.68 0.32 0.47
## M1_IUS_7  0.64  0.62             0.79 0.21 0.51
## M1_IUS_8  0.47        0.34       0.35 0.65 0.64
## M1_IUS_9  0.64  0.31  0.25       0.57 0.43 0.71
## M1_IUS_10 0.53  0.52             0.56 0.44 0.51
## M1_IUS_11 0.53        0.52       0.57 0.43 0.49
## M1_IUS_12 0.58  0.21  0.30       0.48 0.52 0.72
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 3.99 1.55 0.86 0.46 
## 
## general/max  2.58   max/min =   3.38
## mean percent general =  0.59    with sd =  0.11 and cv of  0.18 
## Explained Common Variance of the general factor =  0.58 
## 
## The degrees of freedom are 33  and the fit is  0.16 
## The number of observations was  259  with Chi Square =  39.7  with prob <  0.2
## The root mean square of the residuals is  0.02 
## The df corrected root mean square of the residuals is  0.03
## RMSEA index =  0.028  and the 10 % confidence intervals are  0 0.056
## BIC =  -143.67
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 54  and the fit is  1.4 
## The number of observations was  259  with Chi Square =  353.68  with prob <  1.3e-45
## The root mean square of the residuals is  0.14 
## The df corrected root mean square of the residuals is  0.16 
## 
## RMSEA index =  0.146  and the 10 % confidence intervals are  0.132 0.161
## BIC =  53.61 
## 
## Measures of factor score adequacy             
##                                                  g  F1*  F2*  F3*
## Correlation of scores with factors            0.85 0.78 0.72 0.74
## Multiple R square of scores with factors      0.72 0.61 0.51 0.55
## Minimum correlation of factor score estimates 0.45 0.22 0.03 0.10
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.93 0.89 0.77 0.89
## Omega general for total scores and subscales  0.68 0.57 0.46 0.50
## Omega group for total scores and subscales    0.18 0.32 0.31 0.38
omega(M1_FI_responses) # omega total = 0.80
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect.  Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected.  Examine the results carefully
## Warning in cov2cor(t(w) %*% r %*% w): diag(.) had 0 or NA entries; non-finite
## result is doubtful

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.75 
## G.6:                   0.73 
## Omega Hierarchical:    0.62 
## Omega H asymptotic:    0.77 
## Omega Total            0.8 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##             g   F1*   F2*   F3*   h2   u2   p2
## M1_FI_1r 0.51        0.60       0.63 0.37 0.42
## M1_FI_2r 0.28        0.48       0.33 0.67 0.25
## M1_FI_3r 0.71                   0.51 0.49 0.98
## M1_FI_4r 0.79                   0.63 0.37 0.98
## M1_FI_5r 0.50        0.38  0.25 0.44 0.56 0.55
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 1.71 0.00 0.74 0.11 
## 
## general/max  2.32   max/min =   Inf
## mean percent general =  0.64    with sd =  0.33 and cv of  0.52 
## Explained Common Variance of the general factor =  0.67 
## 
## The degrees of freedom are -2  and the fit is  0 
## The number of observations was  259  with Chi Square =  0  with prob <  NA
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  NA
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5  and the fit is  0.2 
## The number of observations was  259  with Chi Square =  51.76  with prob <  6e-10
## The root mean square of the residuals is  0.13 
## The df corrected root mean square of the residuals is  0.18 
## 
## RMSEA index =  0.19  and the 10 % confidence intervals are  0.145 0.239
## BIC =  23.98 
## 
## Measures of factor score adequacy             
##                                                  g F1*  F2*   F3*
## Correlation of scores with factors            0.87   0 0.74  0.41
## Multiple R square of scores with factors      0.76   0 0.55  0.17
## Minimum correlation of factor score estimates 0.52  -1 0.10 -0.67
## 
##  Total, General and Subset omega for each subset
##                                                  g F1*  F2*  F3*
## Omega total for total scores and subscales    0.80  NA 0.70 0.73
## Omega general for total scores and subscales  0.62  NA 0.31 0.73
## Omega group for total scores and subscales    0.17  NA 0.39 0.00
omega(M1_PHQ_responses) # omega total = 0.90

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.88 
## G.6:                   0.87 
## Omega Hierarchical:    0.75 
## Omega H asymptotic:    0.83 
## Omega Total            0.9 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##              g   F1*   F2*   F3*   h2   u2   p2
## M1_PHQ_1r 0.70  0.37             0.63 0.37 0.77
## M1_PHQ_2r 0.72  0.48             0.75 0.25 0.68
## M1_PHQ_3r 0.59  0.21             0.42 0.58 0.82
## M1_PHQ_4r 0.80        0.59       1.00 0.00 0.65
## M1_PHQ_5r 0.56              0.29 0.43 0.57 0.73
## M1_PHQ_6r 0.64  0.30             0.53 0.47 0.78
## M1_PHQ_7r 0.58  0.24        0.27 0.47 0.53 0.73
## M1_PHQ_8r 0.46              0.55 0.52 0.48 0.41
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 3.27 0.57 0.40 0.50 
## 
## general/max  5.76   max/min =   1.41
## mean percent general =  0.7    with sd =  0.13 and cv of  0.18 
## Explained Common Variance of the general factor =  0.69 
## 
## The degrees of freedom are 7  and the fit is  0.05 
## The number of observations was  259  with Chi Square =  11.48  with prob <  0.12
## The root mean square of the residuals is  0.02 
## The df corrected root mean square of the residuals is  0.04
## RMSEA index =  0.05  and the 10 % confidence intervals are  0 0.1
## BIC =  -27.42
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 20  and the fit is  0.36 
## The number of observations was  259  with Chi Square =  91.65  with prob <  3.8e-11
## The root mean square of the residuals is  0.09 
## The df corrected root mean square of the residuals is  0.11 
## 
## RMSEA index =  0.118  and the 10 % confidence intervals are  0.094 0.143
## BIC =  -19.48 
## 
## Measures of factor score adequacy             
##                                                  g   F1*  F2*   F3*
## Correlation of scores with factors            0.89  0.64 0.78  0.67
## Multiple R square of scores with factors      0.79  0.40 0.62  0.45
## Minimum correlation of factor score estimates 0.59 -0.19 0.23 -0.09
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.90 0.84 1.00 0.70
## Omega general for total scores and subscales  0.75 0.66 0.65 0.47
## Omega group for total scores and subscales    0.10 0.18 0.35 0.23
omega(M1_GAD_responses) # omega total = 0.94

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.9 
## G.6:                   0.9 
## Omega Hierarchical:    0.8 
## Omega H asymptotic:    0.85 
## Omega Total            0.94 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##              g   F1*   F2*   F3*   h2   u2   p2
## M1_GAD_1r 0.71  0.34             0.62 0.38 0.80
## M1_GAD_2r 0.79  0.52             0.89 0.11 0.70
## M1_GAD_3r 0.77  0.26  0.20       0.71 0.29 0.84
## M1_GAD_4r 0.72  0.24        0.20 0.63 0.37 0.83
## M1_GAD_5r 0.61              0.79 0.99 0.01 0.37
## M1_GAD_6r 0.67        0.37       0.60 0.40 0.76
## M1_GAD_7r 0.70        0.28       0.58 0.42 0.85
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 3.56 0.52 0.28 0.67 
## 
## general/max  5.33   max/min =   2.42
## mean percent general =  0.74    with sd =  0.17 and cv of  0.23 
## Explained Common Variance of the general factor =  0.71 
## 
## The degrees of freedom are 3  and the fit is  0.01 
## The number of observations was  259  with Chi Square =  3.74  with prob <  0.29
## The root mean square of the residuals is  0.01 
## The df corrected root mean square of the residuals is  0.02
## RMSEA index =  0.031  and the 10 % confidence intervals are  0 0.114
## BIC =  -12.93
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 14  and the fit is  0.37 
## The number of observations was  259  with Chi Square =  93.42  with prob <  8.5e-14
## The root mean square of the residuals is  0.08 
## The df corrected root mean square of the residuals is  0.1 
## 
## RMSEA index =  0.148  and the 10 % confidence intervals are  0.121 0.178
## BIC =  15.62 
## 
## Measures of factor score adequacy             
##                                                  g   F1*   F2*  F3*
## Correlation of scores with factors            0.90  0.67  0.54 0.94
## Multiple R square of scores with factors      0.80  0.45  0.29 0.88
## Minimum correlation of factor score estimates 0.61 -0.10 -0.43 0.75
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.94 0.89 0.73 0.99
## Omega general for total scores and subscales  0.80 0.74 0.60 0.37
## Omega group for total scores and subscales    0.09 0.15 0.14 0.62
omega(Acceptability_responses) # omega total = 0.72
## Warning in cov2cor(t(w) %*% r %*% w): diag(.) had 0 or NA entries; non-finite
## result is doubtful

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.67 
## G.6:                   0.61 
## Omega Hierarchical:    0.03 
## Omega H asymptotic:    0.04 
## Omega Total            0.72 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##                                    g  F1*   F2*   F3*   h2   u2   p2
## B_acceptability_understandable       0.37             0.19 0.81 0.06
## B_acceptability_useful               0.82             0.72 0.28 0.04
## B_acceptability_recommend            0.73             0.56 0.44 0.02
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 0.05 1.35 0.06 0.00 
## 
## general/max  0.04   max/min =   Inf
## mean percent general =  0.04    with sd =  0.02 and cv of  0.5 
## Explained Common Variance of the general factor =  0.04 
## 
## The degrees of freedom are -3  and the fit is  0 
## The number of observations was  209  with Chi Square =  0  with prob <  NA
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  NA
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 0  and the fit is  0.55 
## The number of observations was  209  with Chi Square =  112.85  with prob <  NA
## The root mean square of the residuals is  0.41 
## The df corrected root mean square of the residuals is  NA 
## 
## Measures of factor score adequacy             
##                                                   g  F1*   F2* F3*
## Correlation of scores with factors             0.18 0.88  0.31   0
## Multiple R square of scores with factors       0.03 0.77  0.10   0
## Minimum correlation of factor score estimates -0.93 0.53 -0.81  -1
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1* F2* F3*
## Omega total for total scores and subscales    0.72 0.71  NA  NA
## Omega general for total scores and subscales  0.03 0.03  NA  NA
## Omega group for total scores and subscales    0.69 0.69  NA  NA

Demographics

Age

Age_noNA <- Demographics_excluded %>% 
  filter(Age != "NA")
write.csv(Age_noNA, "Age_noNA.csv")
Age_numeric <- read_csv("Age_noNA.csv")
## New names:
## Rows: 242 Columns: 12
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (8): Group, Gender_value, Ethnicity_value, Country_residence, Ppt_educat... dbl
## (4): ...1, ...2, ID, Age
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
## • `...1` -> `...2`
# Total Age
Age_meanT <- Age_numeric %>% 
  dplyr::summarise(mean = mean(Age),
            sd = sd(Age),
            min = min(Age),
            max = max(Age))

age_anova <- aov(Age ~ Group, data=Age_numeric)
summary(age_anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## Group         2    4.6   2.289    1.26  0.286
## Residuals   239  434.2   1.817
# Intervention
Age_I <- Age_numeric %>% 
  filter(Group == "Intervention")
Age_meanI <- Age_I %>% 
  dplyr::summarise(mean = mean(Age),
            sd = sd(Age),
            min = min(Age),
            max = max(Age))

# Controls
Age_C <- Age_numeric %>% 
  filter(Group == "Controls")
Age_meanC <- Age_C %>% 
  dplyr::summarise(mean = mean(Age),
            sd = sd(Age),
            min = min(Age),
            max = max(Age))

# ECs
Age_EC <- Age_numeric %>% 
  filter(Group == "ECs")
Age_meanEC <- Age_EC %>% 
  dplyr::summarise(mean = mean(Age),
            sd = sd(Age),
            min = min(Age),
            max = max(Age))

Gender

# Total
Gender_count <- Demographics_excluded %>%
  count(Gender_value)

# By group
Gender_count_G <- Demographics_excluded %>% 
  group_by(Group) %>% 
  count(Gender_value) %>% 
  ungroup()
Gender_chi <- Demographics_excluded %>% 
  filter(Gender_value != "Prefer not to say") %>% 
  filter(Gender_value != "__other")
chisq.test(Gender_chi$Group, Gender_chi$Gender_value)
## 
##  Pearson's Chi-squared test
## 
## data:  Gender_chi$Group and Gender_chi$Gender_value
## X-squared = 0.24926, df = 2, p-value = 0.8828

Ethnicity

# Total
Ethnicity_count <- Demographics_excluded %>%
  count(Ethnicity_value)

# By group
Ethnicity_count_G <- Demographics_excluded %>% 
  group_by(Group) %>% 
  count(Ethnicity_value) %>% 
  ungroup()
Ethnicity_chi <- Demographics_excluded %>% 
  filter(Ethnicity_value != "Prefer not to say") %>% 
  filter(Ethnicity_value != "Aboriginal or Torres Strait Islander")

chisq.test(Ethnicity_chi$Group, Ethnicity_chi$Ethnicity_value)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  Ethnicity_chi$Group and Ethnicity_chi$Ethnicity_value
## X-squared = 2.5676, df = 6, p-value = 0.8608

Education

Education_chi <- Demographics_excluded %>% 
  filter(Ppt_education_value != "Prefer not to say") %>%
  filter(Ppt_education_value != "Primary School")
chisq.test(Education_chi$Group, Education_chi$Ppt_education_value)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  Education_chi$Group and Education_chi$Ppt_education_value
## X-squared = 4.6114, df = 4, p-value = 0.3295
# Total
Education_count <- Demographics_excluded %>%
  count(Ppt_education_value)

# By group
Education_count_G <- Demographics_excluded %>% 
  group_by(Group) %>% 
  count(Ppt_education_value) %>% 
  ungroup()

Mental Health

MH_chi <- Demographics_excluded %>% 
  filter(MH_value != "Prefer not to say")
chisq.test(MH_chi$Group, MH_chi$MH_value)
## 
##  Pearson's Chi-squared test
## 
## data:  MH_chi$Group and MH_chi$MH_value
## X-squared = 1.6109, df = 2, p-value = 0.4469
# Total
MH_count <- Demographics_excluded %>%
  count(MH_value)

# By group
MH_count_G <- Demographics_excluded %>% 
  group_by(Group) %>% 
  count(MH_value) %>% 
  ungroup()

Module Acceptability

Intervention Acceptability

Acceptability_numeric  %>% 
  filter(Group == "C_Intervention") %>% 
  count(B_acceptability_understandable)
## # A tibble: 3 × 2
##   B_acceptability_understandable     n
##                            <dbl> <int>
## 1                              2     4
## 2                              3    98
## 3                             NA     1
Acceptability_numeric  %>% 
  filter(Group == "C_Intervention") %>% 
  count(B_acceptability_useful)
## # A tibble: 4 × 2
##   B_acceptability_useful     n
##                    <dbl> <int>
## 1                      1     3
## 2                      2     8
## 3                      3    90
## 4                     NA     2
Acceptability_numeric  %>% 
  filter(Group == "C_Intervention") %>% 
  count(B_acceptability_recommend)
## # A tibble: 5 × 2
##   B_acceptability_recommend     n
##                       <dbl> <int>
## 1                         0     1
## 2                         1     1
## 3                         2     9
## 4                         3    88
## 5                        NA     4

Psychoeducation Acceptability

Acceptability_numeric  %>% 
  filter(Group == "B_Controls") %>% 
  count(B_acceptability_understandable)
## # A tibble: 5 × 2
##   B_acceptability_understandable     n
##                            <dbl> <int>
## 1                              0     1
## 2                              1     1
## 3                              2     7
## 4                              3    94
## 5                             NA     3
Acceptability_numeric  %>% 
  filter(Group == "B_Controls") %>% 
  count(B_acceptability_useful)
## # A tibble: 4 × 2
##   B_acceptability_useful     n
##                    <dbl> <int>
## 1                      0     1
## 2                      2     7
## 3                      3    94
## 4                     NA     4
Acceptability_numeric  %>% 
  filter(Group == "B_Controls") %>% 
  count(B_acceptability_recommend)
## # A tibble: 4 × 2
##   B_acceptability_recommend     n
##                       <dbl> <int>
## 1                         1     2
## 2                         2     6
## 3                         3    95
## 4                        NA     3

Descriptives set up

Baseline Measures

IUS_mean <- Full_data %>% 
  dplyr::summarise(mean = mean(A_PRE_IUS_total),
            sd = sd(A_PRE_IUS_total))


IUS_mean_I <- Full_data %>%     
  filter(Group == "C_Intervention") %>%
  dplyr::summarise(mean = mean(A_PRE_IUS_total),
            sd = sd(A_PRE_IUS_total))

IUS_mean_C <- Full_data %>%   
  filter(Group == "B_Controls") %>%
  dplyr::summarise(mean = mean(A_PRE_IUS_total),
            sd = sd(A_PRE_IUS_total))

IUS_mean_EC <- Full_data %>%    
  filter(Group == "A_ECs") %>%
  dplyr::summarise(mean = mean(A_PRE_IUS_total),
            sd = sd(A_PRE_IUS_total))
PHQ_mean <- Full_data %>% 
  dplyr::summarise(mean = mean(A_PRE_PHQ_total),
            sd = sd(A_PRE_PHQ_total))

PHQ_mean_I <- Full_data %>%    
  filter(Group == "C_Intervention") %>%
  dplyr::summarise(mean = mean(A_PRE_PHQ_total),
            sd = sd(A_PRE_PHQ_total))

PHQ_mean_C <- Full_data %>%   
  filter(Group == "B_Controls") %>%
  dplyr::summarise(mean = mean(A_PRE_PHQ_total),
            sd = sd(A_PRE_PHQ_total))

PHQ_mean_EC <- Full_data %>%    
  filter(Group == "A_ECs") %>%
  dplyr::summarise(mean = mean(A_PRE_PHQ_total),
            sd = sd(A_PRE_PHQ_total))
GAD_mean <- Full_data %>% 
  dplyr::summarise(mean = mean(A_PRE_GAD_total),
            sd = sd(A_PRE_GAD_total))

GAD_mean_I <- Full_data %>%   
  filter(Group == "C_Intervention") %>%
  dplyr::summarise(mean = mean(A_PRE_GAD_total),
            sd = sd(A_PRE_GAD_total))

GAD_mean_C <- Full_data %>%   
  filter(Group == "B_Controls") %>%
  dplyr::summarise(mean = mean(A_PRE_GAD_total),
            sd = sd(A_PRE_GAD_total))

GAD_mean_EC <- Full_data %>%   
  filter(Group == "A_ECs") %>%
  dplyr::summarise(mean = mean(A_PRE_GAD_total),
            sd = sd(A_PRE_GAD_total))
FI_mean <- Full_data %>% 
  dplyr::summarise(mean = mean(A_PRE_FI_total),
            sd = sd(A_PRE_FI_total))

FI_mean_I <- Full_data %>%  
  filter(Group == "C_Intervention") %>%
  dplyr::summarise(mean = mean(A_PRE_FI_total),
            sd = sd(A_PRE_FI_total))

FI_mean_C <- Full_data %>%  
  filter(Group == "B_Controls") %>%
  dplyr::summarise(mean = mean(A_PRE_FI_total),
            sd = sd(A_PRE_FI_total))

FI_mean_EC <- Full_data %>%  
  filter(Group == "A_ECs") %>%
  dplyr::summarise(mean = mean(A_PRE_FI_total),
            sd = sd(A_PRE_FI_total))
GM_mean <- Full_data %>% 
  dplyr::summarise(mean = mean(A_PRE_GM),
            sd = sd(A_PRE_GM))

GM_mean_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>%
  dplyr::summarise(mean = mean(A_PRE_GM),
            sd = sd(A_PRE_GM))

GM_mean_C <- Full_data %>% 
  filter(Group == "B_Controls") %>%
  dplyr::summarise(mean = mean(A_PRE_GM),
            sd = sd(A_PRE_GM))

GM_mean_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>%
  dplyr::summarise(mean = mean(A_PRE_GM),
            sd = sd(A_PRE_GM))
BT_mean <- BT_BP %>% 
  dplyr::summarise(mean = mean(A_PRE_samples),
            sd = sd(A_PRE_samples))

BT_mean_I <- BT_BP %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(A_PRE_samples),
            sd = sd(A_PRE_samples))

BT_mean_C <- BT_BP %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(A_PRE_samples),
            sd = sd(A_PRE_samples))

BT_mean_EC <- BT_BP %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(A_PRE_samples),
            sd = sd(A_PRE_samples))

Baseline Group comparisons

bt_anova <- aov(A_PRE_samples ~ Group, data=BT_BP)
summary(bt_anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## Group         2   1567   783.4   0.827  0.439
## Residuals   243 230206   947.3
phq_anova <- aov(A_PRE_PHQ_total ~ Group, data=Full_data)
summary(phq_anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## Group         2     80   40.09   1.162  0.315
## Residuals   256   8833   34.50
gad_anova <- aov(A_PRE_GAD_total ~ Group, data=Full_data)
summary(gad_anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## Group         2     63   31.28   1.037  0.356
## Residuals   256   7720   30.16
ius_anova <- aov(A_PRE_IUS_total ~ Group, data=Full_data)
summary(ius_anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## Group         2    143   71.27   0.907  0.405
## Residuals   256  20115   78.57
gm_anova <- aov(A_PRE_GM ~ Group, data=Full_data)
summary(gm_anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## Group         2    6.2   3.113   1.595  0.205
## Residuals   256  499.5   1.951
fi_anova <- aov(A_PRE_FI_total ~ Group, data=Full_data)
summary(fi_anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## Group         2     17   8.279   0.531  0.588
## Residuals   256   3989  15.581

Post Measures

IUS_mean_BP <- Full_data %>% 
  dplyr::summarise(mean = mean(B_POST_IUS_total, na.rm = TRUE),
            sd = sd(B_POST_IUS_total, na.rm = TRUE))

IUS_mean_BP_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(B_POST_IUS_total, na.rm = TRUE),
            sd = sd(B_POST_IUS_total, na.rm = TRUE))

IUS_mean_BP_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(B_POST_IUS_total, na.rm = TRUE),
            sd = sd(B_POST_IUS_total, na.rm = TRUE))

IUS_mean_BP_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(B_POST_IUS_total, na.rm = TRUE),
            sd = sd(B_POST_IUS_total, na.rm = TRUE))
GM_mean_BP <- Full_data %>% 
  dplyr::summarise(mean = mean(B_POST_GM, na.rm = TRUE),
            sd = sd(B_POST_GM, na.rm = TRUE))

GM_mean_BP_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(B_POST_GM, na.rm = TRUE),
            sd = sd(B_POST_GM, na.rm = TRUE))

GM_mean_BP_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(B_POST_GM, na.rm = TRUE),
            sd = sd(B_POST_GM, na.rm = TRUE))

GM_mean_BP_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(B_POST_GM, na.rm = TRUE),
            sd = sd(B_POST_GM, na.rm = TRUE))
BT_mean_BP <- BT_BP %>%
  dplyr::summarise(mean = mean(B_POST_samples, na.rm = TRUE),
            sd = sd(B_POST_samples, na.rm = TRUE))

BT_mean_BP_I <- BT_BP %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(B_POST_samples, na.rm = TRUE),
            sd = sd(B_POST_samples, na.rm = TRUE))

BT_mean_BP_C <- BT_BP %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(B_POST_samples, na.rm = TRUE),
            sd = sd(B_POST_samples, na.rm = TRUE))

BT_mean_BP_EC <- BT_BP %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(B_POST_samples, na.rm = TRUE),
            sd = sd(B_POST_samples, na.rm = TRUE))

1 Week Measures

IUS_mean_W1 <- Full_data %>% 
  dplyr::summarise(mean = mean(C_W1_IUS_total, na.rm = TRUE),
            sd = sd(C_W1_IUS_total, na.rm = TRUE))

IUS_mean_W1_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(C_W1_IUS_total, na.rm = TRUE),
            sd = sd(C_W1_IUS_total, na.rm = TRUE))

IUS_mean_W1_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(C_W1_IUS_total, na.rm = TRUE),
            sd = sd(C_W1_IUS_total, na.rm = TRUE))

IUS_mean_W1_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(C_W1_IUS_total, na.rm = TRUE),
            sd = sd(C_W1_IUS_total, na.rm = TRUE))
PHQ_mean_W1 <- Full_data %>% 
  dplyr::summarise(mean = mean(C_W1_PHQ_total, na.rm = TRUE),
            sd = sd(C_W1_PHQ_total, na.rm = TRUE))

PHQ_mean_W1_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(C_W1_PHQ_total, na.rm = TRUE),
            sd = sd(C_W1_PHQ_total, na.rm = TRUE))

PHQ_mean_W1_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(C_W1_PHQ_total, na.rm = TRUE),
            sd = sd(C_W1_PHQ_total, na.rm = TRUE))

PHQ_mean_W1_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(C_W1_PHQ_total, na.rm = TRUE),
            sd = sd(C_W1_PHQ_total, na.rm = TRUE))
GAD_mean_W1 <- Full_data %>% 
  dplyr::summarise(mean = mean(C_W1_GAD_total, na.rm = TRUE),
            sd = sd(C_W1_GAD_total, na.rm = TRUE))

GAD_mean_W1_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(C_W1_GAD_total, na.rm = TRUE),
            sd = sd(C_W1_GAD_total, na.rm = TRUE))

GAD_mean_W1_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(C_W1_GAD_total, na.rm = TRUE),
            sd = sd(C_W1_GAD_total, na.rm = TRUE))

GAD_mean_W1_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(C_W1_GAD_total, na.rm = TRUE),
            sd = sd(C_W1_GAD_total, na.rm = TRUE))
FI_mean_W1 <- Full_data %>% 
  dplyr::summarise(mean = mean(C_W1_FI_total, na.rm = TRUE),
            sd = sd(C_W1_FI_total, na.rm = TRUE))

FI_mean_W1_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(C_W1_FI_total, na.rm = TRUE),
            sd = sd(C_W1_FI_total, na.rm = TRUE))

FI_mean_W1_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(C_W1_FI_total, na.rm = TRUE),
            sd = sd(C_W1_FI_total, na.rm = TRUE))

FI_mean_W1_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(C_W1_FI_total, na.rm = TRUE),
            sd = sd(C_W1_FI_total, na.rm = TRUE))
GM_mean_W1 <- Full_data %>% 
  dplyr::summarise(mean = mean(C_W1_GM, na.rm = TRUE),
            sd = sd(C_W1_GM, na.rm = TRUE))

GM_mean_W1_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(C_W1_GM, na.rm = TRUE),
            sd = sd(C_W1_GM, na.rm = TRUE))

GM_mean_W1_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(C_W1_GM, na.rm = TRUE),
            sd = sd(C_W1_GM, na.rm = TRUE))

GM_mean_W1_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(C_W1_GM, na.rm = TRUE),
            sd = sd(C_W1_GM, na.rm = TRUE))

1 Month Measures

IUS_mean_M1 <- Full_data %>% 
  dplyr::summarise(mean = mean(D_M1_IUS_total, na.rm = TRUE),
            sd = sd(D_M1_IUS_total, na.rm = TRUE))

IUS_mean_M1_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(D_M1_IUS_total, na.rm = TRUE),
            sd = sd(D_M1_IUS_total, na.rm = TRUE))

IUS_mean_M1_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(D_M1_IUS_total, na.rm = TRUE),
            sd = sd(D_M1_IUS_total, na.rm = TRUE))

IUS_mean_M1_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(D_M1_IUS_total, na.rm = TRUE),
            sd = sd(D_M1_IUS_total, na.rm = TRUE))
PHQ_mean_M1 <- Full_data %>% 
  dplyr::summarise(mean = mean(D_M1_PHQ_total, na.rm = TRUE),
            sd = sd(D_M1_PHQ_total, na.rm = TRUE))

PHQ_mean_M1_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(D_M1_PHQ_total, na.rm = TRUE),
            sd = sd(D_M1_PHQ_total, na.rm = TRUE))

PHQ_mean_M1_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(D_M1_PHQ_total, na.rm = TRUE),
            sd = sd(D_M1_PHQ_total, na.rm = TRUE))

PHQ_mean_M1_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(D_M1_PHQ_total, na.rm = TRUE),
            sd = sd(D_M1_PHQ_total, na.rm = TRUE))
GAD_mean_M1 <- Full_data %>% 
  dplyr::summarise(mean = mean(D_M1_GAD_total, na.rm = TRUE),
            sd = sd(D_M1_GAD_total, na.rm = TRUE))

GAD_mean_M1_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(D_M1_GAD_total, na.rm = TRUE),
            sd = sd(D_M1_GAD_total, na.rm = TRUE))

GAD_mean_M1_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(D_M1_GAD_total, na.rm = TRUE),
            sd = sd(D_M1_GAD_total, na.rm = TRUE))

GAD_mean_M1_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(D_M1_GAD_total, na.rm = TRUE),
            sd = sd(D_M1_GAD_total, na.rm = TRUE))
PHQ_mean_M1 <- Full_data %>% 
  dplyr::summarise(mean = mean(D_M1_PHQ_total, na.rm = TRUE),
            sd = sd(D_M1_PHQ_total, na.rm = TRUE))

PHQ_mean_M1_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(D_M1_PHQ_total, na.rm = TRUE),
            sd = sd(D_M1_PHQ_total, na.rm = TRUE))

PHQ_mean_M1_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(D_M1_PHQ_total, na.rm = TRUE),
            sd = sd(D_M1_PHQ_total, na.rm = TRUE))

PHQ_mean_M1_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(D_M1_PHQ_total, na.rm = TRUE),
            sd = sd(D_M1_PHQ_total, na.rm = TRUE))
FI_mean_M1 <- Full_data %>% 
  dplyr::summarise(mean = mean(D_M1_FI_total, na.rm = TRUE),
            sd = sd(D_M1_FI_total, na.rm = TRUE))

FI_mean_M1_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(D_M1_FI_total, na.rm = TRUE),
            sd = sd(D_M1_FI_total, na.rm = TRUE))

FI_mean_M1_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(D_M1_FI_total, na.rm = TRUE),
            sd = sd(D_M1_FI_total, na.rm = TRUE))

FI_mean_M1_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(D_M1_FI_total, na.rm = TRUE),
            sd = sd(D_M1_FI_total, na.rm = TRUE))
GM_mean_M1 <- Full_data %>% 
  dplyr::summarise(mean = mean(D_M1_GM, na.rm = TRUE),
            sd = sd(D_M1_GM, na.rm = TRUE))

GM_mean_M1_I <- Full_data %>% 
  filter(Group == "C_Intervention") %>% 
  dplyr::summarise(mean = mean(D_M1_GM, na.rm = TRUE),
            sd = sd(D_M1_GM, na.rm = TRUE))

GM_mean_M1_C <- Full_data %>% 
  filter(Group == "B_Controls") %>% 
  dplyr::summarise(mean = mean(D_M1_GM, na.rm = TRUE),
            sd = sd(D_M1_GM, na.rm = TRUE))

GM_mean_M1_EC <- Full_data %>% 
  filter(Group == "A_ECs") %>% 
  dplyr::summarise(mean = mean(D_M1_GM, na.rm = TRUE),
            sd = sd(D_M1_GM, na.rm = TRUE))

Descriptives output

Note: IUS = Cognitive IU BT = Behavioural IU GM = Growth mindsets PHQ = Depression symptoms GAD = Anxiety symptoms FI = Functional impairment I = Mindset intervention group C = Psychoeducation control group EC = Non-active control group

Baseline

IUS_mean
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  42.3  8.86
IUS_mean_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  43.1  9.14
IUS_mean_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  42.0  9.45
IUS_mean_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  41.1  6.74
GM_mean
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.97  1.40
GM_mean_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.90  1.36
GM_mean_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  3.14  1.43
GM_mean_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.74  1.40
PHQ_mean
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  10.0  5.88
PHQ_mean_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  10.7  5.62
PHQ_mean_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.44  6.16
PHQ_mean_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.96  5.77
GAD_mean
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  8.71  5.49
GAD_mean_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.28  5.47
GAD_mean_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  8.49  5.79
GAD_mean_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  8.02  4.85
FI_mean
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  10.2  3.94
FI_mean_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  10.5  3.91
FI_mean_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  10.0  4.12
FI_mean_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.86  3.65
BT_mean
##       mean       sd
## 1 14.25203 30.75727
BT_mean_I
##       mean       sd
## 1 11.61616 19.48034
BT_mean_C
##    mean      sd
## 1 17.18 42.2301
BT_mean_EC
##       mean       sd
## 1 13.57447 18.91715

Post

IUS_mean_BP
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  38.1  10.7
IUS_mean_BP_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  36.8  11.1
IUS_mean_BP_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  38.2  10.7
IUS_mean_BP_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  40.8  9.19
GM_mean_BP
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.51  1.51
GM_mean_BP_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.22  1.49
GM_mean_BP_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.65  1.49
GM_mean_BP_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.78  1.50
BT_mean_BP
##       mean       sd
## 1 9.847107 16.86625
BT_mean_BP_I
##       mean       sd
## 1 8.731959 12.03079
BT_mean_BP_C
##       mean      sd
## 1 9.408163 20.6127
BT_mean_BP_EC
##       mean       sd
## 1 13.06383 16.69601

1 Week

IUS_mean_W1
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  40.0  9.99
IUS_mean_W1_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  38.8  10.1
IUS_mean_W1_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  40.2  10.5
IUS_mean_W1_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  42.0  8.52
GM_mean_W1
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.60  1.48
GM_mean_W1_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.33  1.33
GM_mean_W1_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.83  1.54
GM_mean_W1_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.67  1.58
PHQ_mean_W1
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.10  5.92
PHQ_mean_W1_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.22  5.78
PHQ_mean_W1_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  8.60  6.13
PHQ_mean_W1_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.92  5.78
GAD_mean_W1
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  8.14  5.75
GAD_mean_W1_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  8.26  5.94
GAD_mean_W1_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  7.90  5.82
GAD_mean_W1_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  8.38  5.25
FI_mean_W1
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.75  3.95
FI_mean_W1_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1   9.5  3.77
FI_mean_W1_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.87  4.12
FI_mean_W1_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.98  4.01

1 Month

IUS_mean_M1
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  40.2  10.3
IUS_mean_M1_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  38.4  10.3
IUS_mean_M1_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  40.5  10.9
IUS_mean_M1_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  43.4  8.08
GM_mean_M1
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.56  1.44
GM_mean_M1_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.24  1.39
GM_mean_M1_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.81  1.46
GM_mean_M1_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  2.68  1.38
PHQ_mean_M1
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  8.65  6.31
PHQ_mean_M1_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  8.36  6.15
PHQ_mean_M1_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  8.15  6.27
PHQ_mean_M1_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  10.3  6.58
GAD_mean_M1
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  7.79  5.91
GAD_mean_M1_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  7.60  5.78
GAD_mean_M1_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  7.34  5.90
GAD_mean_M1_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.14  6.13
FI_mean_M1
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.41  4.15
FI_mean_M1_I
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.29  4.04
FI_mean_M1_C
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.37  4.40
FI_mean_M1_EC
## # A tibble: 1 × 2
##    mean    sd
##   <dbl> <dbl>
## 1  9.73  3.90