Load packages

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(janitor) 
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(haven) 
library(naniar) 
library(ggpubr) 
library(report) 
library(ggplot2)
library(reshape2)
## 
## Attaching package: 'reshape2'
## 
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(sjPlot)
library(parameters)
library(mediation)
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## 
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## Loading required package: mvtnorm
## Loading required package: sandwich
## mediation: Causal Mediation Analysis
## Version: 4.5.0
library(lavaan)
## This is lavaan 0.6-15
## lavaan is FREE software! Please report any bugs.
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step
library(modEvA)
library(rsconnect)
library(effectsize)
## 
## Attaching package: 'effectsize'
## 
## The following object is masked from 'package:mvtnorm':
## 
##     standardize
library(emmeans)
library(performance)
library(tinytex)

Read in the data

Full_data_all <- read_csv("Full_data_all.csv")
## Rows: 259 Columns: 208
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr   (1): Group
## dbl (207): ID, B_IUS_1, B_IUS_2, B_IUS_3, B_IUS_4, B_IUS_5, B_IUS_6, B_IUS_7...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
BT_full_raw <- read_csv("Full_BT_data.csv") %>% 
  dplyr::select("ID", "A_PRE_samples", "B_POST_samples") # numbers in the PRE_samples and POST_samples columns are the number of times participants sampled across each set of 10 trials (maximum being 300 - one ppt has 308 due to a glitch)
## New names:
## Rows: 259 Columns: 4
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (4): ...1, ID, A_PRE_samples, B_POST_samples
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`

Hypothesis 1

H1a: IUS and mental health association at PRE

#Depression
PRE_IUS_PHQ_lm <- lm(A_PRE_IUS_total ~ A_PRE_PHQ_total, data = Full_data_all)
summary(PRE_IUS_PHQ_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_PHQ_total, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -28.9576  -4.5129   0.0901   4.9155  22.1617 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      35.4890     0.9776  36.303  < 2e-16 ***
## A_PRE_PHQ_total   0.6746     0.0841   8.021 3.72e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.94 on 257 degrees of freedom
## Multiple R-squared:  0.2002, Adjusted R-squared:  0.1971 
## F-statistic: 64.34 on 1 and 257 DF,  p-value: 3.716e-14
cor.test(Full_data_all$A_PRE_IUS_total, Full_data_all$A_PRE_PHQ_total, method=c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  Full_data_all$A_PRE_IUS_total and Full_data_all$A_PRE_PHQ_total
## t = 8.0215, df = 257, p-value = 3.716e-14
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3443686 0.5399152
## sample estimates:
##       cor 
## 0.4474747
#Anxiety
PRE_IUS_GAD_lm <- lm(A_PRE_IUS_total ~ A_PRE_GAD_total,  data = Full_data_all)
summary(PRE_IUS_GAD_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_GAD_total, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -25.3228  -4.8228   0.7116   4.1772  20.6429 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     35.04669    0.88936   39.41   <2e-16 ***
## A_PRE_GAD_total  0.82761    0.08639    9.58   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.621 on 257 degrees of freedom
## Multiple R-squared:  0.2631, Adjusted R-squared:  0.2603 
## F-statistic: 91.78 on 1 and 257 DF,  p-value: < 2.2e-16
cor.test(Full_data_all$A_PRE_IUS_total, Full_data_all$A_PRE_GAD_total, method=c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  Full_data_all$A_PRE_IUS_total and Full_data_all$A_PRE_GAD_total
## t = 9.5802, df = 257, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4171735 0.5975068
## sample estimates:
##       cor 
## 0.5129779

H1b: IUS and BT at PRE

Set up

# Adding in groups + excluding participants who only sampled (never made a choice = did not understand task)
BT_PRE_POST <- merge(BT_full_raw,Full_data_all,
                      by=c("ID"),
                      all = TRUE) %>% 
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples", "A_PRE_IUS_total", "B_POST_IUS_total") %>% 
  filter(ID != "8892522", ID != "8892570", ID != "8892628", ID != "8892668", ID != "8892681", ID != "8892779", ID != "8892794", ID != "8893157", ID != "8893186", ID != "8892873", ID != "9113535", ID != "9113549", ID != "9113550") # excluding those not making a choice

Keeping those who never sample (only make choices)

PRE_IUS_BT_lm <- lm(A_PRE_IUS_total ~ A_PRE_samples, data = BT_PRE_POST)
summary(PRE_IUS_BT_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_samples, data = BT_PRE_POST)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -29.813  -5.889   1.036   6.280  17.187 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   42.81292    0.61535  69.575  < 2e-16 ***
## A_PRE_samples -0.04991    0.01818  -2.745  0.00651 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.754 on 244 degrees of freedom
## Multiple R-squared:  0.02995,    Adjusted R-squared:  0.02598 
## F-statistic: 7.534 on 1 and 244 DF,  p-value: 0.006505
cor.test(BT_PRE_POST$A_PRE_IUS_total, BT_PRE_POST$A_PRE_samples, method=c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  BT_PRE_POST$A_PRE_IUS_total and BT_PRE_POST$A_PRE_samples
## t = -2.7448, df = 244, p-value = 0.006505
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.29182197 -0.04905378
## sample estimates:
##        cor 
## -0.1730653

Excluding those who never sample at PRE

BT_removed_PRE <- BT_PRE_POST %>% 
  filter(A_PRE_samples != "0") # only excluding from PRE

PRE_IUS_BT_removed_lm <- lm(A_PRE_IUS_total ~ A_PRE_samples, data = BT_removed_PRE)
summary(PRE_IUS_BT_removed_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_samples, data = BT_removed_PRE)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.606  -5.932   1.014   5.934  15.934 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   43.14794    0.72669  59.376  < 2e-16 ***
## A_PRE_samples -0.05408    0.01801  -3.003  0.00307 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.265 on 171 degrees of freedom
## Multiple R-squared:  0.0501, Adjusted R-squared:  0.04454 
## F-statistic: 9.018 on 1 and 171 DF,  p-value: 0.003074
cor.test(BT_removed_PRE$A_PRE_IUS_total, BT_removed_PRE$A_PRE_samples, method=c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  BT_removed_PRE$A_PRE_IUS_total and BT_removed_PRE$A_PRE_samples
## t = -3.0031, df = 171, p-value = 0.003074
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.36096987 -0.07720195
## sample estimates:
##        cor 
## -0.2238241

Hypothesis 2

H2a IUS: difference in change in cognitive IUS over time between groups

Baseline to post

IUS_BP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total")
IUS_BP_long <- IUS_BP %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_BP <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_BP_long, REML = TRUE)
summary(IUS_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_BP_long
## 
## REML criterion at convergence: 3592.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.95161 -0.44757  0.00781  0.41532  2.86841 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 71.13    8.434   
##  Residual             24.28    4.927   
## Number of obs: 516, groups:  ID, 259
## 
## Fixed effects:
##                                          Estimate Std. Error       df t value
## (Intercept)                               41.0800     1.3814 328.7093  29.738
## GroupB_Controls                            0.9483     1.6758 328.7093   0.566
## GroupC_Intervention                        1.9880     1.6836 328.7093   1.181
## TimeB_POST_IUS_total                      -0.2800     0.9854 254.2485  -0.284
## GroupB_Controls:TimeB_POST_IUS_total      -3.5879     1.1955 254.2485  -3.001
## GroupC_Intervention:TimeB_POST_IUS_total  -6.0437     1.2044 254.6121  -5.018
##                                          Pr(>|t|)    
## (Intercept)                               < 2e-16 ***
## GroupB_Controls                           0.57186    
## GroupC_Intervention                       0.23854    
## TimeB_POST_IUS_total                      0.77654    
## GroupB_Controls:TimeB_POST_IUS_total      0.00296 ** 
## GroupC_Intervention:TimeB_POST_IUS_total 9.81e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TB_POST_IUS -0.357  0.294  0.293              
## GB_C:TB_POS  0.294 -0.357 -0.241 -0.824       
## GC_I:TB_POS  0.292 -0.241 -0.356 -0.818  0.674
anova  (IUS_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group        10.89    5.45     2 256.08  0.2243    0.7992    
## Time       1394.73 1394.73     1 254.53 57.4503 6.459e-13 ***
## Group:Time  617.82  308.91     2 254.58 12.7243 5.407e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
performance::r2(IUS_MEM_BP)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.760
##      Marginal R2: 0.056
parameters::standardise_parameters(IUS_MEM_BP)
## # Standardization method: refit
## 
## Parameter                                | Std. Coef. |         95% CI
## ----------------------------------------------------------------------
## (Intercept)                              |       0.09 | [-0.18,  0.36]
## GroupB_Controls                          |       0.09 | [-0.23,  0.42]
## GroupC_Intervention                      |       0.20 | [-0.13,  0.53]
## TimeB_POST_IUS_total                     |      -0.03 | [-0.22,  0.17]
## GroupB_Controls:TimeB_POST_IUS_total     |      -0.36 | [-0.59, -0.12]
## GroupC_Intervention:TimeB_POST_IUS_total |      -0.60 | [-0.84, -0.37]

Comparing intervention and psychoed groups

IUS_BP_IC <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total") %>% 
  filter(Group != "A_ECs")
IUS_BP_long_IC <- IUS_BP_IC %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_BP_IC <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_BP_long_IC, REML = TRUE)
summary(IUS_MEM_BP_IC)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_BP_long_IC
## 
## REML criterion at convergence: 2932.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.82123 -0.43408  0.01576  0.42315  2.74006 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 76.04    8.720   
##  Residual             26.59    5.156   
## Number of obs: 416, groups:  ID, 209
## 
## Fixed effects:
##                                          Estimate Std. Error       df t value
## (Intercept)                               42.0283     0.9840 266.9103  42.714
## GroupC_Intervention                        1.0397     1.4016 266.9103   0.742
## TimeB_POST_IUS_total                      -3.8679     0.7083 205.2694  -5.461
## GroupC_Intervention:TimeB_POST_IUS_total  -2.4555     1.0133 205.7308  -2.423
##                                          Pr(>|t|)    
## (Intercept)                               < 2e-16 ***
## GroupC_Intervention                        0.4589    
## TimeB_POST_IUS_total                     1.36e-07 ***
## GroupC_Intervention:TimeB_POST_IUS_total   0.0163 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpC_I TB_POS
## GrpC_Intrvn -0.702              
## TB_POST_IUS -0.360  0.253       
## GC_I:TB_POS  0.252 -0.358 -0.699
anova  (IUS_MEM_BP_IC)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF  F value  Pr(>F)    
## Group         0.55    0.55     1 207.22   0.0207 0.88583    
## Time       2689.38 2689.38     1 205.73 101.1464 < 2e-16 ***
## Group:Time  156.13  156.13     1 205.73   5.8719 0.01625 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(IUS_MEM_BP_IC)
## # Standardization method: refit
## 
## Parameter                                | Std. Coef. |         95% CI
## ----------------------------------------------------------------------
## (Intercept)                              |       0.19 | [ 0.01,  0.38]
## GroupC_Intervention                      |       0.10 | [-0.16,  0.36]
## TimeB_POST_IUS_total                     |      -0.37 | [-0.50, -0.24]
## GroupC_Intervention:TimeB_POST_IUS_total |      -0.24 | [-0.43, -0.04]

Effect of time

Intervention group

IUS_I_p <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total") %>% 
  filter(Group == "C_Intervention")
IUS_I_long_p <- IUS_I_p %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_I_p <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_I_long_p, REML = TRUE)
summary(IUS_MEM_I_p)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_I_long_p
## 
## REML criterion at convergence: 1458.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.51489 -0.43453  0.03273  0.35595  2.42007 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 69.41    8.331   
##  Residual             33.77    5.812   
## Number of obs: 204, groups:  ID, 103
## 
## Fixed effects:
##                      Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)           43.0680     1.0009 139.9412   43.03  < 2e-16 ***
## TimeB_POST_IUS_total  -6.3200     0.8165 100.8777   -7.74 7.84e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TB_POST_IUS -0.401
anova  (IUS_MEM_I_p)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Time 2023.5  2023.5     1 100.88  59.912 7.843e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(IUS_MEM_I_p)
## # Standardization method: refit
## 
## Parameter            | Std. Coef. |         95% CI
## --------------------------------------------------
## (Intercept)          |       0.29 | [ 0.11,  0.48]
## TimeB_POST_IUS_total |      -0.59 | [-0.75, -0.44]

Psychoeducation group

IUS_C_p <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total") %>% 
  filter(Group == "B_Controls")
IUS_C_long_p <- IUS_C_p %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_C_p <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_C_long_p, REML = TRUE)
summary(IUS_MEM_C_p)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_C_long_p
## 
## REML criterion at convergence: 1466.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.89613 -0.42593 -0.04266  0.47538  2.98785 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 82.41    9.078   
##  Residual             19.72    4.441   
## Number of obs: 212, groups:  ID, 106
## 
## Fixed effects:
##                      Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)           42.0283     0.9816 127.1907   42.81  < 2e-16 ***
## TimeB_POST_IUS_total  -3.8679     0.6100 105.0000   -6.34 5.87e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TB_POST_IUS -0.311
anova  (IUS_MEM_C_p)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Time 792.92  792.92     1   105    40.2 5.866e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(IUS_MEM_C_p)
## # Standardization method: refit
## 
## Parameter            | Std. Coef. |         95% CI
## --------------------------------------------------
## (Intercept)          |       0.19 | [ 0.00,  0.38]
## TimeB_POST_IUS_total |      -0.38 | [-0.49, -0.26]

Non-active control group

IUS_EC_p <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total") %>% 
  filter(Group == "A_ECs")
IUS_EC_long_p <- IUS_EC_p %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_EC_p <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_EC_long_p, REML = TRUE)
summary(IUS_MEM_EC_p)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_EC_long_p
## 
## REML criterion at convergence: 650
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7648 -0.5669  0.0155  0.4452  2.4970 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 50.40    7.10    
##  Residual             14.59    3.82    
## Number of obs: 100, groups:  ID, 50
## 
## Fixed effects:
##                      Estimate Std. Error     df t value Pr(>|t|)    
## (Intercept)            41.080      1.140 61.197  36.030   <2e-16 ***
## TimeB_POST_IUS_total   -0.280      0.764 49.000  -0.366    0.716    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TB_POST_IUS -0.335
anova  (IUS_MEM_EC_p)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Time   1.96    1.96     1    49  0.1343 0.7156
parameters::standardise_parameters(IUS_MEM_EC_p)
## # Standardization method: refit
## 
## Parameter            | Std. Coef. |        95% CI
## -------------------------------------------------
## (Intercept)          |       0.02 | [-0.26, 0.30]
## TimeB_POST_IUS_total |      -0.03 | [-0.22, 0.15]

Effect size

# IUS - post
m.ef_ius_p<-emmeans(IUS_MEM_BP, "Time", "Group")
eff_size(m.ef_ius_p, sigma = sigma(IUS_MEM_BP), edf = df.residual(IUS_MEM_BP))
## Group = A_ECs:
##  contrast                           effect.size    SE  df lower.CL upper.CL
##  A_PRE_IUS_total - B_POST_IUS_total      0.0568 0.200 329   -0.337     0.45
## 
## Group = B_Controls:
##  contrast                           effect.size    SE  df lower.CL upper.CL
##  A_PRE_IUS_total - B_POST_IUS_total      0.7850 0.140 329    0.510     1.06
## 
## Group = C_Intervention:
##  contrast                           effect.size    SE  df lower.CL upper.CL
##  A_PRE_IUS_total - B_POST_IUS_total      1.2834 0.146 329    0.996     1.57
## 
## sigma used for effect sizes: 4.927 
## Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
## Confidence level used: 0.95

Baseline to 1W

IUS_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "C_W1_IUS_total")
IUS_B1W_long <- IUS_B1W %>%
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_B1W <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1W_long, REML = TRUE)
summary(IUS_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_B1W_long
## 
## REML criterion at convergence: 3541.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.05745 -0.40449 -0.00329  0.45694  2.90920 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 64.04    8.003   
##  Residual             24.69    4.969   
## Number of obs: 511, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             41.0800     1.3321 334.4251  30.837
## GroupB_Controls                          0.9483     1.6161 334.4251   0.587
## GroupC_Intervention                      1.9880     1.6236 334.4251   1.224
## TimeC_W1_IUS_total                       0.8991     1.0114 251.5502   0.889
## GroupB_Controls:TimeC_W1_IUS_total      -2.7707     1.2233 251.1429  -2.265
## GroupC_Intervention:TimeC_W1_IUS_total  -5.4023     1.2307 251.3348  -4.390
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupB_Controls                          0.5577    
## GroupC_Intervention                      0.2217    
## TimeC_W1_IUS_total                       0.3749    
## GroupB_Controls:TimeC_W1_IUS_total       0.0244 *  
## GroupC_Intervention:TimeC_W1_IUS_total 1.67e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_IUS_ -0.366  0.302  0.301              
## GB_C:TC_W1_  0.303 -0.368 -0.249 -0.827       
## GC_I:TC_W1_  0.301 -0.248 -0.367 -0.822  0.679
anova  (IUS_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group        5.54    2.77     2 256.11  0.1122 0.8938692    
## Time       372.30  372.30     1 251.08 15.0803 0.0001318 ***
## Group:Time 499.29  249.64     2 250.97 10.1120 5.976e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
performance::r2(IUS_MEM_B1W)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.729
##      Marginal R2: 0.027
parameters::standardise_parameters(IUS_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |  -7.24e-03 | [-0.28,  0.27]
## GroupB_Controls                        |       0.10 | [-0.23,  0.43]
## GroupC_Intervention                    |       0.21 | [-0.13,  0.55]
## TimeC_W1_IUS_total                     |       0.09 | [-0.11,  0.30]
## GroupB_Controls:TimeC_W1_IUS_total     |      -0.29 | [-0.55, -0.04]
## GroupC_Intervention:TimeC_W1_IUS_total |      -0.57 | [-0.82, -0.31]

Comparing intervention and psychoed groups

IUS_B1W_IC <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "C_W1_IUS_total") %>% 
  filter(Group != "A_ECs")
IUS_B1W_long_IC <- IUS_B1W_IC %>%
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_B1W_IC <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1W_long_IC, REML = TRUE)
summary(IUS_MEM_B1W_IC)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_B1W_long_IC
## 
## REML criterion at convergence: 2902.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.89876 -0.43691  0.03033  0.45405  2.74965 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 68.32    8.265   
##  Residual             27.60    5.253   
## Number of obs: 413, groups:  ID, 209
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             42.0283     0.9512 272.7572  44.184
## GroupC_Intervention                      1.0397     1.3550 272.7572   0.767
## TimeC_W1_IUS_total                      -1.8705     0.7275 202.7497  -2.571
## GroupC_Intervention:TimeC_W1_IUS_total  -2.6297     1.0387 203.0139  -2.532
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupC_Intervention                      0.4436    
## TimeC_W1_IUS_total                       0.0109 *  
## GroupC_Intervention:TimeC_W1_IUS_total   0.0121 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpC_I TC_W1_
## GrpC_Intrvn -0.702              
## TmC_W1_IUS_ -0.376  0.264       
## GC_I:TC_W1_  0.263 -0.375 -0.700
anova  (IUS_MEM_B1W_IC)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group         1.32    1.32     1 206.62   0.048   0.82677    
## Time       1038.14 1038.14     1 203.01  37.619 4.422e-09 ***
## Group:Time  176.89  176.89     1 203.01   6.410   0.01211 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(IUS_MEM_B1W_IC)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.10 | [-0.09,  0.29]
## GroupC_Intervention                    |       0.11 | [-0.16,  0.37]
## TimeC_W1_IUS_total                     |      -0.19 | [-0.33, -0.04]
## GroupC_Intervention:TimeC_W1_IUS_total |      -0.27 | [-0.47, -0.06]

Effect of time

Intervention group

IUS_I_1w <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "C_W1_IUS_total") %>% 
  filter(Group == "C_Intervention")
IUS_I_long_1w <- IUS_I_1w %>%
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_I_1w <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_I_long_1w, REML = TRUE)
summary(IUS_MEM_I_1w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_I_long_1w
## 
## REML criterion at convergence: 1433.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.75154 -0.41446  0.07427  0.44626  2.56493 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 61.29    7.829   
##  Residual             31.45    5.608   
## Number of obs: 203, groups:  ID, 103
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)         43.0680     0.9489 140.1867  45.386  < 2e-16 ***
## TimeC_W1_IUS_total  -4.4842     0.7912  99.1655  -5.668 1.42e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmC_W1_IUS_ -0.407
anova  (IUS_MEM_I_1w)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Time 1010.4  1010.4     1 99.166  32.123 1.424e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(IUS_MEM_I_1w)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.21 | [ 0.02,  0.41]
## TimeC_W1_IUS_total |      -0.46 | [-0.62, -0.30]

Psychoeducation group

IUS_C_1w <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "C_W1_IUS_total") %>% 
  filter(Group == "B_Controls")
IUS_C_long_1w <- IUS_C_1w %>%
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_C_1w <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_C_long_1w, REML = TRUE)
summary(IUS_MEM_C_1w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_C_long_1w
## 
## REML criterion at convergence: 1467.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1362 -0.4476 -0.0080  0.4750  2.3101 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 74.91    8.655   
##  Residual             23.94    4.893   
## Number of obs: 210, groups:  ID, 106
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)         42.0283     0.9657 133.0949  43.520  < 2e-16 ***
## TimeC_W1_IUS_total  -1.8758     0.6778 103.7076  -2.768  0.00669 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmC_W1_IUS_ -0.345
anova  (IUS_MEM_C_1w)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Time 183.38  183.38     1 103.71  7.6596 0.006689 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(IUS_MEM_C_1w)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.09 | [-0.10,  0.28]
## TimeC_W1_IUS_total |      -0.19 | [-0.32, -0.05]

Non-active control group

IUS_EC_1w <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "C_W1_IUS_total") %>% 
  filter(Group == "A_ECs")
IUS_EC_long_1w <- IUS_EC_1w %>%
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_EC_1w <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_EC_long_1w, REML = TRUE)
summary(IUS_MEM_EC_1w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_EC_long_1w
## 
## REML criterion at convergence: 624.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7506 -0.4373 -0.1144  0.3660  1.9978 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 45.92    6.776   
##  Residual             12.25    3.500   
## Number of obs: 98, groups:  ID, 50
## 
## Fixed effects:
##                    Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)         41.0800     1.0786 60.1817  38.087   <2e-16 ***
## TimeC_W1_IUS_total   0.8932     0.7129 47.6699   1.253    0.216    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmC_W1_IUS_ -0.319
anova  (IUS_MEM_EC_1w)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Time  19.23   19.23     1 47.67  1.5701 0.2163
parameters::standardise_parameters(IUS_MEM_EC_1w)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |        95% CI
## -----------------------------------------------
## (Intercept)        |      -0.06 | [-0.34, 0.22]
## TimeC_W1_IUS_total |       0.12 | [-0.07, 0.30]

Effect size

# IUS - post
m.ef_ius_1w<-emmeans(IUS_MEM_B1W, "Time", "Group")
eff_size(m.ef_ius_1w, sigma = sigma(IUS_MEM_B1W), edf = df.residual(IUS_MEM_B1W))
## Group = A_ECs:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_IUS_total - C_W1_IUS_total      -0.181 0.204 334   -0.582     0.22
## 
## Group = B_Controls:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_IUS_total - C_W1_IUS_total       0.377 0.139 334    0.103     0.65
## 
## Group = C_Intervention:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_IUS_total - C_W1_IUS_total       0.906 0.144 334    0.623     1.19
## 
## sigma used for effect sizes: 4.969 
## Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
## Confidence level used: 0.95

Baseline to 1M

IUS_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "D_M1_IUS_total")
IUS_B1M_long <- IUS_B1M %>%
  pivot_longer(cols = c(A_PRE_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_B1M <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1M_long, REML = TRUE)
summary(IUS_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_B1M_long
## 
## REML criterion at convergence: 3427.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.95787 -0.46559  0.01777  0.50003  2.25579 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 59.99    7.745   
##  Residual             29.75    5.454   
## Number of obs: 488, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             41.0800     1.3397 343.4368  30.664
## GroupB_Controls                          0.9483     1.6252 343.4368   0.583
## GroupC_Intervention                      1.9880     1.6328 343.4368   1.218
## TimeD_M1_IUS_total                       2.2079     1.1512 235.9671   1.918
## GroupB_Controls:TimeD_M1_IUS_total      -3.9626     1.3951 235.8181  -2.840
## GroupC_Intervention:TimeD_M1_IUS_total  -6.9119     1.4023 235.8887  -4.929
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupB_Controls                          0.5599    
## GroupC_Intervention                      0.2242    
## TimeD_M1_IUS_total                       0.0563 .  
## GroupB_Controls:TimeD_M1_IUS_total       0.0049 ** 
## GroupC_Intervention:TimeD_M1_IUS_total 1.56e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_IUS_ -0.386  0.318  0.317              
## GB_C:TD_M1_  0.318 -0.386 -0.261 -0.825       
## GC_I:TD_M1_  0.317 -0.261 -0.386 -0.821  0.677
anova  (IUS_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)    
## Group       28.24   14.12     2 257.23  0.4747 0.622614    
## Time       207.73  207.73     1 235.80  6.9828 0.008781 ** 
## Group:Time 736.40  368.20     2 235.76 12.3767 7.74e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
performance::r2(IUS_MEM_B1M)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.679
##      Marginal R2: 0.032
parameters::standardise_parameters(IUS_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |      -0.02 | [-0.30,  0.25]
## GroupB_Controls                        |       0.10 | [-0.23,  0.43]
## GroupC_Intervention                    |       0.21 | [-0.13,  0.54]
## TimeD_M1_IUS_total                     |       0.23 | [-0.01,  0.47]
## GroupB_Controls:TimeD_M1_IUS_total     |      -0.41 | [-0.70, -0.13]
## GroupC_Intervention:TimeD_M1_IUS_total |      -0.72 | [-1.01, -0.43]

Effect of time

Intervention group

IUS_I_1m <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "D_M1_IUS_total") %>% 
  filter(Group == "C_Intervention")
IUS_I_long_1m <- IUS_I_1m %>%
  pivot_longer(cols = c(A_PRE_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_I_1m <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_I_long_1m, REML = TRUE)
summary(IUS_MEM_I_1m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_I_long_1m
## 
## REML criterion at convergence: 1377.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.21864 -0.50213  0.02461  0.53633  2.12054 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 59.37    7.705   
##  Residual             33.76    5.811   
## Number of obs: 194, groups:  ID, 103
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)         43.0680     0.9509 140.9831  45.290  < 2e-16 ***
## TimeD_M1_IUS_total  -4.7031     0.8523  94.9404  -5.518 2.96e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmD_M1_IUS_ -0.404
anova  (IUS_MEM_I_1m)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Time 1028.1  1028.1     1 94.94  30.449 2.961e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(IUS_MEM_I_1m)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.22 | [ 0.03,  0.41]
## TimeD_M1_IUS_total |      -0.47 | [-0.64, -0.30]

Psychoeduction group

IUS_C_1m <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "D_M1_IUS_total") %>% 
  filter(Group == "B_Controls")
IUS_C_long_1m <- IUS_C_1m %>%
  pivot_longer(cols = c(A_PRE_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_C_1m <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_C_long_1m, REML = TRUE)
summary(IUS_MEM_C_1m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_C_long_1m
## 
## REML criterion at convergence: 1431.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.78127 -0.44321  0.07034  0.45684  2.03174 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 69.93    8.363   
##  Residual             33.21    5.763   
## Number of obs: 200, groups:  ID, 106
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)         42.0283     0.9864 139.0853   42.61   <2e-16 ***
## TimeD_M1_IUS_total  -1.7574     0.8329  95.8821   -2.11   0.0375 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmD_M1_IUS_ -0.381
anova  (IUS_MEM_C_1m)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Time 147.85  147.85     1 95.882  4.4519 0.03747 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(IUS_MEM_C_1m)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.07 | [-0.12,  0.26]
## TimeD_M1_IUS_total |      -0.17 | [-0.34, -0.01]

Non-active control group

IUS_EC_1m <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "D_M1_IUS_total") %>% 
  filter(Group == "A_ECs")
IUS_EC_long_1m <- IUS_EC_1m %>%
  pivot_longer(cols = c(A_PRE_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

IUS_MEM_EC_1m <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_EC_long_1m, REML = TRUE)
summary(IUS_MEM_EC_1m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_EC_long_1m
## 
## REML criterion at convergence: 601
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1175 -0.4876 -0.1018  0.5149  1.5792 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 40.03    6.327   
##  Residual             13.84    3.720   
## Number of obs: 94, groups:  ID, 50
## 
## Fixed effects:
##                    Estimate Std. Error     df t value Pr(>|t|)    
## (Intercept)          41.080      1.038 61.951  39.577  < 2e-16 ***
## TimeD_M1_IUS_total    2.197      0.787 44.914   2.791  0.00768 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmD_M1_IUS_ -0.339
anova  (IUS_MEM_EC_1m)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Time 107.85  107.85     1 44.914  7.7919 0.007679 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(IUS_MEM_EC_1m)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |        95% CI
## -----------------------------------------------
## (Intercept)        |      -0.14 | [-0.42, 0.13]
## TimeD_M1_IUS_total |       0.29 | [ 0.09, 0.50]

Effect size

# IUS - post
m.ef_ius_1m<-emmeans(IUS_MEM_B1M, "Time", "Group")
eff_size(m.ef_ius_1m, sigma = sigma(IUS_MEM_B1M), edf = df.residual(IUS_MEM_B1M))
## Group = A_ECs:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_IUS_total - D_M1_IUS_total      -0.405 0.212 342  -0.8209   0.0112
## 
## Group = B_Controls:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_IUS_total - D_M1_IUS_total       0.322 0.145 342   0.0367   0.6067
## 
## Group = C_Intervention:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_IUS_total - D_M1_IUS_total       0.862 0.149 342   0.5685   1.1564
## 
## sigma used for effect sizes: 5.454 
## Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
## Confidence level used: 0.95

H2a BT: difference in change in behavioural IUS over time between groups (baseline to post)

BT_full <- BT_PRE_POST %>%
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
BT_BP <- BT_full %>%
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
BT_BP_long <- BT_BP %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")

Excluding never samplers

BT_BP_removed <- BT_BP %>% 
  filter(A_PRE_samples != "0") %>% # only excluding from PRE
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
BT_BP_long_removed <- BT_BP_removed %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")

BT_MEM_BP_removed <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long_removed, REML = TRUE)
summary(BT_MEM_BP_removed)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Group * Time + (1 | ID)
##    Data: BT_BP_long_removed
## 
## REML criterion at convergence: 3169.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0812 -0.2761 -0.0683  0.1403  6.8856 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 429.4    20.72   
##  Residual             358.4    18.93   
## Number of obs: 343, groups:  ID, 173
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             16.7895     4.5533 261.0959   3.687
## GroupB_Controls                          9.2408     5.7157 261.0959   1.617
## GroupC_Intervention                     -0.1228     5.6702 261.0959  -0.022
## TimeB_POST_samples                      -1.1053     4.3434 168.0021  -0.254
## GroupB_Controls:TimeB_POST_samples     -11.2692     5.4762 168.6705  -2.058
## GroupC_Intervention:TimeB_POST_samples  -3.4718     5.4196 168.3090  -0.641
##                                        Pr(>|t|)    
## (Intercept)                            0.000276 ***
## GroupB_Controls                        0.107143    
## GroupC_Intervention                    0.982737    
## TimeB_POST_samples                     0.799442    
## GroupB_Controls:TimeB_POST_samples     0.041143 *  
## GroupC_Intervention:TimeB_POST_samples 0.522658    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.797                            
## GrpC_Intrvn -0.803  0.640                     
## TmB_POST_sm -0.477  0.380  0.383              
## GB_C:TB_POS  0.378 -0.475 -0.304 -0.793       
## GC_I:TB_POS  0.382 -0.304 -0.476 -0.801  0.636
anova  (BT_MEM_BP_removed)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Group       601.59  300.79     2 170.47  0.8392 0.433833   
## Time       2885.84 2885.84     1 168.72  8.0513 0.005105 **
## Group:Time 1785.79  892.90     2 168.82  2.4911 0.085856 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
performance::r2(BT_MEM_BP_removed)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.558
##      Marginal R2: 0.028
parameters::standardise_parameters(BT_MEM_BP_removed)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |  -6.00e-03 | [-0.32,  0.31]
## GroupB_Controls                        |       0.33 | [-0.07,  0.72]
## GroupC_Intervention                    |  -4.34e-03 | [-0.40,  0.39]
## TimeB_POST_samples                     |      -0.04 | [-0.34,  0.26]
## GroupB_Controls:TimeB_POST_samples     |      -0.40 | [-0.78, -0.02]
## GroupC_Intervention:TimeB_POST_samples |      -0.12 | [-0.50,  0.25]

Comparing intervention and psychoed groups

BT_BP_IC <- BT_BP_removed %>% 
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples") %>% 
  filter(Group != "A_ECs")
BT_BP_long_IC <- BT_BP_IC %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")

BT_MEM_BP_IC <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long_IC, REML = TRUE)
summary(BT_MEM_BP_IC)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Group * Time + (1 | ID)
##    Data: BT_BP_long_IC
## 
## REML criterion at convergence: 2518
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4599 -0.2873 -0.0982  0.1635  6.2722 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 456.3    21.36   
##  Residual             455.2    21.34   
## Number of obs: 267, groups:  ID, 135
## 
## Fixed effects:
##                                        Estimate Std. Error      df t value
## (Intercept)                              26.030      3.716 211.489   7.004
## GroupC_Intervention                      -9.364      5.198 211.489  -1.801
## TimeB_POST_samples                      -12.359      3.757 132.624  -3.289
## GroupC_Intervention:TimeB_POST_samples    7.790      5.240 132.240   1.487
##                                        Pr(>|t|)    
## (Intercept)                            3.25e-11 ***
## GroupC_Intervention                     0.07308 .  
## TimeB_POST_samples                      0.00129 ** 
## GroupC_Intervention:TimeB_POST_samples  0.13947    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpC_I TB_POS
## GrpC_Intrvn -0.715              
## TmB_POST_sm -0.494  0.353       
## GC_I:TB_POS  0.354 -0.495 -0.717
anova  (BT_MEM_BP_IC)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Group       667.5   667.5     1 133.77  1.4664 0.228044   
## Time       4750.6  4750.6     1 132.24 10.4361 0.001559 **
## Group:Time 1006.2  1006.2     1 132.24  2.2103 0.139473   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(BT_MEM_BP_IC)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.29 | [ 0.05,  0.53]
## GroupC_Intervention                    |      -0.31 | [-0.64,  0.03]
## TimeB_POST_samples                     |      -0.40 | [-0.65, -0.16]
## GroupC_Intervention:TimeB_POST_samples |       0.26 | [-0.08,  0.59]

Effect of time

Intervention group

BT_I_p <- BT_BP_removed %>%
  filter(Group == "C_Intervention")
BT_I_long_p <- BT_I_p %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")

BT_MEM_I_p <- lmer(BT_Score ~ Time + (1|ID), data = BT_I_long_p, REML = TRUE)
summary(BT_MEM_I_p)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Time + (1 | ID)
##    Data: BT_I_long_p
## 
## REML criterion at convergence: 1140.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6981 -0.3709 -0.1205  0.2751  5.7490 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 179.3    13.39   
##  Residual             134.1    11.58   
## Number of obs: 137, groups:  ID, 69
## 
## Fixed effects:
##                    Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)          16.667      2.131 102.084    7.82 4.99e-12 ***
## TimeB_POST_samples   -4.582      1.983  67.537   -2.31   0.0239 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmB_POST_sm -0.460
anova  (BT_MEM_I_p)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Time 716.05  716.05     1 67.537  5.3379 0.02393 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(BT_MEM_I_p)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.12 | [-0.11,  0.36]
## TimeB_POST_samples |      -0.26 | [-0.48, -0.04]

Psychoeducation group

BT_C_p <- BT_BP_removed %>%
  filter(Group == "B_Controls")
BT_C_long_p <- BT_C_p %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")

BT_MEM_C_p <- lmer(BT_Score ~ Time + (1|ID), data = BT_C_long_p, REML = TRUE)
summary(BT_MEM_C_p)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Time + (1 | ID)
##    Data: BT_C_long_p
## 
## REML criterion at convergence: 1294.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5709 -0.3255 -0.1085  0.1256  4.7932 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 746.3    27.32   
##  Residual             795.1    28.20   
## Number of obs: 130, groups:  ID, 66
## 
## Fixed effects:
##                    Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)          26.030      4.833 104.490   5.386 4.46e-07 ***
## TimeB_POST_samples  -12.353      4.965  64.569  -2.488   0.0154 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmB_POST_sm -0.502
anova  (BT_MEM_C_p)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Time 4921.9  4921.9     1 64.569  6.1906 0.01543 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(BT_MEM_C_p)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.15 | [-0.09,  0.39]
## TimeB_POST_samples |      -0.31 | [-0.56, -0.06]

Non-active control group

BT_EC_p <- BT_BP_removed %>%
  filter(Group == "A_ECs")
BT_EC_long_p <- BT_EC_p %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")

BT_MEM_EC_p <- lmer(BT_Score ~ Time + (1|ID), data = BT_EC_long_p, REML = TRUE)
summary(BT_MEM_EC_p)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Time + (1 | ID)
##    Data: BT_EC_long_p
## 
## REML criterion at convergence: 561.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5291 -0.3098 -0.0795  0.2461  3.1860 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 332.07   18.223  
##  Residual              16.05    4.006  
## Number of obs: 76, groups:  ID, 38
## 
## Fixed effects:
##                    Estimate Std. Error     df t value Pr(>|t|)    
## (Intercept)          16.790      3.027 38.745   5.547 2.25e-06 ***
## TimeB_POST_samples   -1.105      0.919 37.000  -1.203    0.237    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmB_POST_sm -0.152
anova  (BT_MEM_EC_p)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Time  23.21   23.21     1    37  1.4463 0.2368
parameters::standardise_parameters(BT_MEM_EC_p)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |        95% CI
## -----------------------------------------------
## (Intercept)        |       0.03 | [-0.30, 0.36]
## TimeB_POST_samples |      -0.06 | [-0.16, 0.04]

Effect size

m.ef_BT_p<-emmeans(BT_MEM_BP_removed, "Time", "Group")
eff_size(m.ef_BT_p, sigma = sigma(BT_MEM_BP_removed), edf = df.residual(BT_MEM_BP_removed))
## Group = A_ECs:
##  contrast                       effect.size    SE  df lower.CL upper.CL
##  A_PRE_samples - B_POST_samples      0.0584 0.229 260  -0.3934    0.510
## 
## Group = B_Controls:
##  contrast                       effect.size    SE  df lower.CL upper.CL
##  A_PRE_samples - B_POST_samples      0.6536 0.178 260   0.3031    1.004
## 
## Group = C_Intervention:
##  contrast                       effect.size    SE  df lower.CL upper.CL
##  A_PRE_samples - B_POST_samples      0.2418 0.171 260  -0.0959    0.579
## 
## sigma used for effect sizes: 18.93 
## Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
## Confidence level used: 0.95

Including never samplers

BT_BP <- BT_full %>%
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
BT_BP_long <- BT_BP %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")

BT_MEM_BP <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long, REML = TRUE)
summary(BT_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Group * Time + (1 | ID)
##    Data: BT_BP_long
## 
## REML criterion at convergence: 4395.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9264 -0.2398 -0.0766  0.0958  8.1574 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 354      18.81   
##  Residual             263      16.22   
## Number of obs: 488, groups:  ID, 246
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             13.5745     3.6233 364.5272   3.746
## GroupB_Controls                          3.6055     4.3930 364.5272   0.821
## GroupC_Intervention                     -1.9583     4.4001 364.5272  -0.445
## TimeB_POST_samples                      -0.5106     3.3457 240.3829  -0.153
## GroupB_Controls:TimeB_POST_samples      -7.2867     4.0668 240.9058  -1.792
## GroupC_Intervention:TimeB_POST_samples  -2.4873     4.0736 240.9148  -0.611
##                                        Pr(>|t|)    
## (Intercept)                            0.000208 ***
## GroupB_Controls                        0.412330    
## GroupC_Intervention                    0.656542    
## TimeB_POST_samples                     0.878821    
## GroupB_Controls:TimeB_POST_samples     0.074429 .  
## GroupC_Intervention:TimeB_POST_samples 0.542042    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.825                            
## GrpC_Intrvn -0.823  0.679                     
## TmB_POST_sm -0.462  0.381  0.380              
## GB_C:TB_POS  0.380 -0.461 -0.313 -0.823       
## GC_I:TB_POS  0.379 -0.313 -0.460 -0.821  0.676
anova  (BT_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Group       322.16  161.08     2 243.67  0.6124 0.54290  
## Time       1532.59 1532.59     1 241.18  5.8262 0.01653 *
## Group:Time 1018.76  509.38     2 241.35  1.9364 0.14645  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
performance::r2(BT_MEM_BP)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.580
##      Marginal R2: 0.015
parameters::standardise_parameters(BT_MEM_BP)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |       0.06 | [-0.23, 0.35]
## GroupB_Controls                        |       0.14 | [-0.20, 0.49]
## GroupC_Intervention                    |      -0.08 | [-0.43, 0.27]
## TimeB_POST_samples                     |      -0.02 | [-0.28, 0.24]
## GroupB_Controls:TimeB_POST_samples     |      -0.29 | [-0.61, 0.03]
## GroupC_Intervention:TimeB_POST_samples |      -0.10 | [-0.42, 0.22]

Comparing intervention and psychoed groups

BT_BP_IC1 <- BT_BP %>% 
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples") %>% 
  filter(Group != "A_ECs")
BT_BP_long_IC1 <- BT_BP_IC1 %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")

BT_MEM_BP_IC1 <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long_IC1, REML = TRUE)
summary(BT_MEM_BP_IC1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Group * Time + (1 | ID)
##    Data: BT_BP_long_IC1
## 
## REML criterion at convergence: 3608.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2671 -0.2557 -0.0891  0.0849  7.5617 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 365.7    19.12   
##  Residual             321.8    17.94   
## Number of obs: 394, groups:  ID, 199
## 
## Fixed effects:
##                                        Estimate Std. Error      df t value
## (Intercept)                              17.180      2.622 305.755   6.552
## GroupC_Intervention                      -5.564      3.718 305.755  -1.497
## TimeB_POST_samples                       -7.796      2.557 195.920  -3.049
## GroupC_Intervention:TimeB_POST_samples    4.806      3.625 195.927   1.326
##                                        Pr(>|t|)    
## (Intercept)                            2.41e-10 ***
## GroupC_Intervention                     0.13552    
## TimeB_POST_samples                      0.00261 ** 
## GroupC_Intervention:TimeB_POST_samples  0.18648    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpC_I TB_POS
## GrpC_Intrvn -0.705              
## TmB_POST_sm -0.480  0.339       
## GC_I:TB_POS  0.339 -0.480 -0.705
anova  (BT_MEM_BP_IC1)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Group       302.30  302.30     1 198.09  0.9393 0.333635   
## Time       2848.62 2848.62     1 195.93  8.8514 0.003297 **
## Group:Time  565.61  565.61     1 195.93  1.7575 0.186481   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(BT_MEM_BP_IC1)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.21 | [ 0.01,  0.40]
## GroupC_Intervention                    |      -0.21 | [-0.49,  0.07]
## TimeB_POST_samples                     |      -0.30 | [-0.49, -0.11]
## GroupC_Intervention:TimeB_POST_samples |       0.18 | [-0.09,  0.45]

Effect of time

Intervention group

BT_I_p1 <- BT_BP %>%
  filter(Group == "C_Intervention")
BT_I_long_p1 <- BT_I_p1 %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")

BT_MEM_I_p1 <- lmer(BT_Score ~ Time + (1|ID), data = BT_I_long_p1, REML = TRUE)
summary(BT_MEM_I_p1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Time + (1 | ID)
##    Data: BT_I_long_p1
## 
## REML criterion at convergence: 1592.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5157 -0.3236 -0.0810  0.1243  6.7260 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 165.17   12.852  
##  Residual              97.48    9.873  
## Number of obs: 196, groups:  ID, 99
## 
## Fixed effects:
##                    Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)          11.616      1.629 139.893   7.132 4.87e-11 ***
## TimeB_POST_samples   -3.009      1.415  97.039  -2.126    0.036 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmB_POST_sm -0.427
anova  (BT_MEM_I_p1)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Time 440.74  440.74     1 97.039  4.5214 0.03601 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(BT_MEM_I_p1)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.09 | [-0.11,  0.29]
## TimeB_POST_samples |      -0.19 | [-0.36, -0.01]

Psychoeducation group

BT_C_p1 <- BT_BP %>%
  filter(Group == "B_Controls")
BT_C_long_p1 <- BT_C_p1 %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")

BT_MEM_C_p1 <- lmer(BT_Score ~ Time + (1|ID), data = BT_C_long_p1, REML = TRUE)
summary(BT_MEM_C_p1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Time + (1 | ID)
##    Data: BT_C_long_p1
## 
## REML criterion at convergence: 1910.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2017 -0.3063 -0.0615  0.0217  5.8984 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 564.4    23.76   
##  Residual             543.8    23.32   
## Number of obs: 198, groups:  ID, 100
## 
## Fixed effects:
##                    Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)          17.180      3.329 156.506   5.161 7.36e-07 ***
## TimeB_POST_samples   -7.794      3.323  98.568  -2.346    0.021 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmB_POST_sm -0.492
anova  (BT_MEM_C_p1)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)  
## Time 2991.6  2991.6     1 98.568  5.5017  0.021 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(BT_MEM_C_p1)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.11 | [-0.08,  0.31]
## TimeB_POST_samples |      -0.23 | [-0.43, -0.04]

Non-active control group

BT_EC_p1 <- BT_BP %>%
  filter(Group == "A_ECs")
BT_EC_long_p1 <- BT_EC_p1 %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")

BT_MEM_EC_p1 <- lmer(BT_Score ~ Time + (1|ID), data = BT_EC_long_p1, REML = TRUE)
summary(BT_MEM_EC_p1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Time + (1 | ID)
##    Data: BT_EC_long_p1
## 
## REML criterion at convergence: 688.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6821 -0.2646 -0.0177  0.1754  3.4099 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 303.44   17.420  
##  Residual              14.87    3.856  
## Number of obs: 94, groups:  ID, 47
## 
## Fixed effects:
##                    Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)         13.5745     2.6024 48.1986   5.216 3.81e-06 ***
## TimeB_POST_samples  -0.5106     0.7954 46.0000  -0.642    0.524    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmB_POST_sm -0.153
anova  (BT_MEM_EC_p1)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Time 6.1277  6.1277     1    46  0.4122 0.5241
parameters::standardise_parameters(BT_MEM_EC_p1)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |        95% CI
## -----------------------------------------------
## (Intercept)        |       0.01 | [-0.28, 0.31]
## TimeB_POST_samples |      -0.03 | [-0.12, 0.06]

Effect size

m.ef_BT_p<-emmeans(BT_MEM_BP, "Time", "Group")
eff_size(m.ef_BT_p, sigma = sigma(BT_MEM_BP), edf = df.residual(BT_MEM_BP))
## Group = A_ECs:
##  contrast                       effect.size    SE  df lower.CL upper.CL
##  A_PRE_samples - B_POST_samples      0.0315 0.206 364  -0.3742    0.437
## 
## Group = B_Controls:
##  contrast                       effect.size    SE  df lower.CL upper.CL
##  A_PRE_samples - B_POST_samples      0.4808 0.143 364   0.1988    0.763
## 
## Group = C_Intervention:
##  contrast                       effect.size    SE  df lower.CL upper.CL
##  A_PRE_samples - B_POST_samples      0.1848 0.143 364  -0.0972    0.467
## 
## sigma used for effect sizes: 16.22 
## Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
## Confidence level used: 0.95

H2a GM: difference in change in growth mindsets over time between groups

Baseline to post

GM_BP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM")
GM_BP_long <- GM_BP %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_BP <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_BP_long, REML = TRUE)
summary(GM_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_BP_long
## 
## REML criterion at convergence: 1673.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5473 -0.4356 -0.0320  0.4087  2.9611 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.471    1.2128  
##  Residual             0.614    0.7836  
## Number of obs: 516, groups:  ID, 259
## 
## Fixed effects:
##                                   Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                         2.7400     0.2042 341.6189  13.418  < 2e-16
## GroupB_Controls                     0.4015     0.2477 341.6189   1.621 0.105989
## GroupC_Intervention                 0.1629     0.2489 341.6189   0.655 0.513178
## TimeB_POST_GM                       0.0400     0.1567 254.5431   0.255 0.798745
## GroupB_Controls:TimeB_POST_GM      -0.5306     0.1901 254.5431  -2.791 0.005657
## GroupC_Intervention:TimeB_POST_GM  -0.7237     0.1915 254.9544  -3.779 0.000196
##                                      
## (Intercept)                       ***
## GroupB_Controls                      
## GroupC_Intervention                  
## TimeB_POST_GM                        
## GroupB_Controls:TimeB_POST_GM     ** 
## GroupC_Intervention:TimeB_POST_GM ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmB_POST_GM -0.384  0.316  0.315              
## GB_C:TB_POS  0.316 -0.384 -0.260 -0.824       
## GC_I:TB_POS  0.314 -0.259 -0.383 -0.818  0.674
anova  (GM_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       2.0352  1.0176     2 256.34  1.6574 0.1926771    
## Time       16.3667 16.3667     1 254.86 26.6558   4.9e-07 ***
## Group:Time  8.8331  4.4165     2 254.92  7.1931 0.0009142 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
performance::r2(GM_MEM_BP)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.718
##      Marginal R2: 0.043
parameters::standardise_parameters(GM_MEM_BP)
## # Standardization method: refit
## 
## Parameter                         | Std. Coef. |         95% CI
## ---------------------------------------------------------------
## (Intercept)                       |   1.11e-03 | [-0.27,  0.27]
## GroupB_Controls                   |       0.27 | [-0.06,  0.60]
## GroupC_Intervention               |       0.11 | [-0.22,  0.44]
## TimeB_POST_GM                     |       0.03 | [-0.18,  0.24]
## GroupB_Controls:TimeB_POST_GM     |      -0.36 | [-0.61, -0.11]
## GroupC_Intervention:TimeB_POST_GM |      -0.49 | [-0.75, -0.24]

Comparing non-active controls and intervention groups

GM_I_p_IE <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM") %>% 
  filter(Group != "B_Controls")
GM_I_long_p_IE <- GM_I_p_IE %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_B1W_IE <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_I_long_p_IE, REML = TRUE)
summary(GM_MEM_B1W_IE)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_I_long_p_IE
## 
## REML criterion at convergence: 988.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.47516 -0.44344 -0.04883  0.35658  2.91081 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.4062   1.1858  
##  Residual             0.6422   0.8014  
## Number of obs: 304, groups:  ID, 153
## 
## Fixed effects:
##                                   Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                         2.7400     0.2024 205.0049  13.537  < 2e-16
## GroupC_Intervention                 0.1629     0.2467 205.0049   0.660 0.509739
## TimeB_POST_GM                       0.0400     0.1603 149.5750   0.250 0.803264
## GroupC_Intervention:TimeB_POST_GM  -0.7238     0.1959 149.8293  -3.695 0.000308
##                                      
## (Intercept)                       ***
## GroupC_Intervention                  
## TimeB_POST_GM                        
## GroupC_Intervention:TimeB_POST_GM ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpC_I TB_POS
## GrpC_Intrvn -0.820              
## TmB_POST_GM -0.396  0.325       
## GC_I:TB_POS  0.324 -0.395 -0.818
anova  (GM_MEM_B1W_IE)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group      0.4950  0.4950     1 151.21  0.7707 0.3813846    
## Time       6.9372  6.9372     1 149.83 10.8020 0.0012630 ** 
## Group:Time 8.7685  8.7685     1 149.83 13.6535 0.0003076 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(GM_MEM_B1W_IE)
## # Standardization method: refit
## 
## Parameter                         | Std. Coef. |         95% CI
## ---------------------------------------------------------------
## (Intercept)                       |       0.08 | [-0.20,  0.35]
## GroupC_Intervention               |       0.11 | [-0.22,  0.45]
## TimeB_POST_GM                     |       0.03 | [-0.19,  0.24]
## GroupC_Intervention:TimeB_POST_GM |      -0.50 | [-0.76, -0.23]

Comparing non-active controls and psychoeducation groups

GM_I_p_PE <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM") %>% 
  filter(Group != "C_Intervention")
GM_I_long_p_PE <- GM_I_p_PE %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_B1W_PE <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_I_long_p_PE, REML = TRUE)
summary(GM_MEM_B1W_PE)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_I_long_p_PE
## 
## REML criterion at convergence: 990.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.44261 -0.43280 -0.01648  0.39801  2.48209 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.6193   1.2725  
##  Residual             0.5078   0.7126  
## Number of obs: 312, groups:  ID, 156
## 
## Fixed effects:
##                               Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                     2.7400     0.2063 194.9955  13.284  < 2e-16 ***
## GroupB_Controls                 0.4015     0.2502 194.9955   1.605  0.11020    
## TimeB_POST_GM                   0.0400     0.1425 154.0000   0.281  0.77935    
## GroupB_Controls:TimeB_POST_GM  -0.5306     0.1729 154.0000  -3.069  0.00254 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C TB_POS
## GrpB_Cntrls -0.824              
## TmB_POST_GM -0.345  0.285       
## GB_C:TB_POS  0.285 -0.345 -0.824
anova  (GM_MEM_B1W_PE)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)   
## Group      0.1709  0.1709     1   154  0.3366 0.562661   
## Time       3.4486  3.4486     1   154  6.7908 0.010062 * 
## Group:Time 4.7819  4.7819     1   154  9.4164 0.002542 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(GM_MEM_B1W_PE)
## # Standardization method: refit
## 
## Parameter                     | Std. Coef. |         95% CI
## -----------------------------------------------------------
## (Intercept)                   |      -0.08 | [-0.35,  0.20]
## GroupB_Controls               |       0.27 | [-0.06,  0.61]
## TimeB_POST_GM                 |       0.03 | [-0.16,  0.22]
## GroupB_Controls:TimeB_POST_GM |      -0.36 | [-0.59, -0.13]

Effect of time

Intervention group

GM_I_p <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM") %>% 
  filter(Group == "C_Intervention")
GM_I_long_p <- GM_I_p %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_I_p <- lmer(GM_Score ~ Time + (1|ID), data = GM_I_long_p, REML = TRUE)
summary(GM_MEM_I_p)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_I_long_p
## 
## REML criterion at convergence: 677.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1963 -0.4652 -0.1065  0.4509  2.7023 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.2470   1.1167  
##  Residual             0.7763   0.8811  
## Number of obs: 204, groups:  ID, 103
## 
## Fixed effects:
##               Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)     2.9029     0.1402 147.4341  20.712  < 2e-16 ***
## TimeB_POST_GM  -0.6839     0.1238 101.2984  -5.526 2.55e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmB_POST_GM -0.435
anova  (GM_MEM_I_p)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)    
## Time 23.709  23.709     1 101.3  30.539 2.55e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(GM_MEM_I_p)
## # Standardization method: refit
## 
## Parameter     | Std. Coef. |         95% CI
## -------------------------------------------
## (Intercept)   |       0.23 | [ 0.04,  0.42]
## TimeB_POST_GM |      -0.47 | [-0.63, -0.30]

Psychoeducation group

GM_C_p <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM") %>% 
  filter(Group == "B_Controls")
GM_C_long_p <- GM_C_p %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_C_p <- lmer(GM_Score ~ Time + (1|ID), data = GM_C_long_p, REML = TRUE)
summary(GM_MEM_C_p)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_C_long_p
## 
## REML criterion at convergence: 684.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.29531 -0.50719 -0.06417  0.45981  2.33778 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.5642   1.2507  
##  Residual             0.5738   0.7575  
## Number of obs: 212, groups:  ID, 106
## 
## Fixed effects:
##               Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)     3.1415     0.1420 136.7834  22.121  < 2e-16 ***
## TimeB_POST_GM  -0.4906     0.1040 105.0000  -4.715 7.47e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmB_POST_GM -0.366
anova  (GM_MEM_C_p)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Time 12.755  12.755     1   105   22.23 7.468e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(GM_MEM_C_p)
## # Standardization method: refit
## 
## Parameter     | Std. Coef. |         95% CI
## -------------------------------------------
## (Intercept)   |       0.17 | [-0.02,  0.36]
## TimeB_POST_GM |      -0.33 | [-0.47, -0.19]

Non-active control group

GM_EC_p <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM") %>% 
  filter(Group == "A_ECs")
GM_EC_long_p <- GM_EC_p %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_EC_p <- lmer(GM_Score ~ Time + (1|ID), data = GM_EC_long_p, REML = TRUE)
summary(GM_MEM_EC_p)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_EC_long_p
## 
## REML criterion at convergence: 302.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.32797 -0.24433  0.00479  0.22845  2.78488 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.7376   1.3182  
##  Residual             0.3665   0.6054  
## Number of obs: 100, groups:  ID, 50
## 
## Fixed effects:
##               Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)     2.7400     0.2051 58.2658   13.36   <2e-16 ***
## TimeB_POST_GM   0.0400     0.1211 49.0000    0.33    0.743    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmB_POST_GM -0.295
anova  (GM_MEM_EC_p)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Time   0.04    0.04     1    49  0.1091 0.7425
parameters::standardise_parameters(GM_MEM_EC_p)
## # Standardization method: refit
## 
## Parameter     | Std. Coef. |        95% CI
## ------------------------------------------
## (Intercept)   |      -0.01 | [-0.30, 0.27]
## TimeB_POST_GM |       0.03 | [-0.14, 0.19]

Effect size

# GM - post
m.ef_GM_p<-emmeans(GM_MEM_BP, "Time", "Group")
eff_size(m.ef_GM_p, sigma = sigma(GM_MEM_BP), edf = df.residual(GM_MEM_BP))
## Group = A_ECs:
##  contrast             effect.size    SE  df lower.CL upper.CL
##  A_PRE_GM - B_POST_GM      -0.051 0.200 341   -0.444    0.342
## 
## Group = B_Controls:
##  contrast             effect.size    SE  df lower.CL upper.CL
##  A_PRE_GM - B_POST_GM       0.626 0.139 341    0.353    0.899
## 
## Group = C_Intervention:
##  contrast             effect.size    SE  df lower.CL upper.CL
##  A_PRE_GM - B_POST_GM       0.873 0.143 341    0.591    1.154
## 
## sigma used for effect sizes: 0.7836 
## Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
## Confidence level used: 0.95

Baseline to 1W

GM_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "C_W1_GM")
GM_B1W_long <- GM_B1W %>%
  pivot_longer(cols = c(A_PRE_GM, C_W1_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_B1W <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_B1W_long, REML = TRUE)
summary(GM_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_B1W_long
## 
## REML criterion at convergence: 1747.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2664 -0.5109 -0.1518  0.4940  2.7870 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.038    1.019   
##  Residual             1.010    1.005   
## Number of obs: 511, groups:  ID, 259
## 
## Fixed effects:
##                                 Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                       2.7400     0.2024 403.7332  13.539   <2e-16
## GroupB_Controls                   0.4015     0.2455 403.7332   1.635   0.1027
## GroupC_Intervention               0.1629     0.2467 403.7332   0.661   0.5093
## TimeC_W1_GM                      -0.0784     0.2041 253.9941  -0.384   0.7012
## GroupB_Controls:TimeC_W1_GM      -0.2376     0.2470 253.3522  -0.962   0.3370
## GroupC_Intervention:TimeC_W1_GM  -0.5133     0.2484 253.6544  -2.066   0.0398
##                                    
## (Intercept)                     ***
## GroupB_Controls                    
## GroupC_Intervention                
## TimeC_W1_GM                        
## GroupB_Controls:TimeC_W1_GM        
## GroupC_Intervention:TimeC_W1_GM *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TimeC_W1_GM -0.489  0.403  0.401              
## GB_C:TC_W1_  0.404 -0.490 -0.332 -0.826       
## GC_I:TC_W1_  0.402 -0.331 -0.490 -0.822  0.679
anova  (GM_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       5.0659  2.5329     2 256.72  2.5080 0.0834210 .  
## Time       12.1159 12.1159     1 253.25 11.9969 0.0006256 ***
## Group:Time  4.6763  2.3381     2 253.08  2.3152 0.1008383    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
performance::r2(GM_MEM_B1W)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.524
##      Marginal R2: 0.035
parameters::standardise_parameters(GM_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                       | Std. Coef. |         95% CI
## -------------------------------------------------------------
## (Intercept)                     |      -0.03 | [-0.31,  0.24]
## GroupB_Controls                 |       0.28 | [-0.06,  0.61]
## GroupC_Intervention             |       0.11 | [-0.22,  0.45]
## TimeC_W1_GM                     |      -0.05 | [-0.33,  0.22]
## GroupB_Controls:TimeC_W1_GM     |      -0.16 | [-0.50,  0.17]
## GroupC_Intervention:TimeC_W1_GM |      -0.35 | [-0.69, -0.02]

Effect of time

Intervention group

GM_I_1w <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "C_W1_GM") %>% 
  filter(Group == "C_Intervention")
GM_I_long_1w <- GM_I_1w %>%
  pivot_longer(cols = c(A_PRE_GM, C_W1_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_I_1w <- lmer(GM_Score ~ Time + (1|ID), data = GM_I_long_1w, REML = TRUE)
summary(GM_MEM_I_1w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_I_long_1w
## 
## REML criterion at convergence: 669.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0272 -0.5347 -0.1665  0.4495  2.6449 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.9190   0.9586  
##  Residual             0.8902   0.9435  
## Number of obs: 203, groups:  ID, 103
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)   2.9029     0.1325 160.1284  21.903  < 2e-16 ***
## TimeC_W1_GM  -0.5918     0.1330  99.8615  -4.451 2.23e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TimeC_W1_GM -0.490
anova  (GM_MEM_I_1w)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)    
## Time 17.635  17.635     1 99.862  19.809 2.23e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(GM_MEM_I_1w)
## # Standardization method: refit
## 
## Parameter   | Std. Coef. |         95% CI
## -----------------------------------------
## (Intercept) |       0.21 | [ 0.02,  0.40]
## TimeC_W1_GM |      -0.43 | [-0.62, -0.24]

Psychoeducation group

GM_C_1w <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "C_W1_GM") %>% 
  filter(Group == "B_Controls")
GM_C_long_1w <- GM_C_1w %>%
  pivot_longer(cols = c(A_PRE_GM, C_W1_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_C_1w <- lmer(GM_Score ~ Time + (1|ID), data = GM_C_long_1w, REML = TRUE)
summary(GM_MEM_C_1w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_C_long_1w
## 
## REML criterion at convergence: 721.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.91277 -0.54284 -0.07926  0.49810  2.19714 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.2837   1.1330  
##  Residual             0.9229   0.9607  
## Number of obs: 210, groups:  ID, 106
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)   3.1415     0.1443 156.1787  21.774   <2e-16 ***
## TimeC_W1_GM  -0.3162     0.1330 104.0931  -2.378   0.0192 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TimeC_W1_GM -0.454
anova  (GM_MEM_C_1w)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Time 5.2187  5.2187     1 104.09  5.6548 0.01923 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(GM_MEM_C_1w)
## # Standardization method: refit
## 
## Parameter   | Std. Coef. |         95% CI
## -----------------------------------------
## (Intercept) |       0.10 | [-0.09,  0.30]
## TimeC_W1_GM |      -0.21 | [-0.39, -0.04]

Non-active control group

GM_EC_1w <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "C_W1_GM") %>% 
  filter(Group == "A_ECs")
GM_EC_long_1w <- GM_EC_1w %>%
  pivot_longer(cols = c(A_PRE_GM, C_W1_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_EC_1w <- lmer(GM_Score ~ Time + (1|ID), data = GM_EC_long_1w, REML = TRUE)
summary(GM_MEM_EC_1w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_EC_long_1w
## 
## REML criterion at convergence: 350.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7863 -0.6582 -0.1036  0.4625  2.4339 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.7595   0.8715  
##  Residual             1.4472   1.2030  
## Number of obs: 98, groups:  ID, 50
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  2.74000    0.21008 86.32366  13.043   <2e-16 ***
## TimeC_W1_GM -0.07678    0.24394 48.82968  -0.315    0.754    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TimeC_W1_GM -0.565
anova  (GM_MEM_EC_1w)
## Type III Analysis of Variance Table with Satterthwaite's method
##       Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Time 0.14335 0.14335     1 48.83  0.0991 0.7543
parameters::standardise_parameters(GM_MEM_EC_1w)
## # Standardization method: refit
## 
## Parameter   | Std. Coef. |        95% CI
## ----------------------------------------
## (Intercept) |       0.02 | [-0.26, 0.31]
## TimeC_W1_GM |      -0.05 | [-0.38, 0.28]

Effect size

# GM - 1w
m.ef_GM_1w<-emmeans(GM_MEM_B1W, "Time", "Group")
eff_size(m.ef_GM_1w, sigma = sigma(GM_MEM_B1W), edf = df.residual(GM_MEM_B1W))
## Group = A_ECs:
##  contrast           effect.size    SE  df lower.CL upper.CL
##  A_PRE_GM - C_W1_GM       0.078 0.203 403  -0.3213    0.477
## 
## Group = B_Controls:
##  contrast           effect.size    SE  df lower.CL upper.CL
##  A_PRE_GM - C_W1_GM       0.314 0.139 403   0.0417    0.587
## 
## Group = C_Intervention:
##  contrast           effect.size    SE  df lower.CL upper.CL
##  A_PRE_GM - C_W1_GM       0.589 0.142 403   0.3094    0.868
## 
## sigma used for effect sizes: 1.005 
## Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
## Confidence level used: 0.95

Baseline to 1M

GM_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "D_M1_GM")
GM_B1M_long <- GM_B1M %>%
  pivot_longer(cols = c(A_PRE_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_B1M <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_B1M_long, REML = TRUE)
summary(GM_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_B1M_long
## 
## REML criterion at convergence: 1639.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3875 -0.5367 -0.1142  0.4999  2.8661 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.0920   1.0450  
##  Residual             0.8918   0.9444  
## Number of obs: 487, groups:  ID, 259
## 
## Fixed effects:
##                                  Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                       2.74000    0.19919 375.54541  13.756   <2e-16
## GroupB_Controls                   0.40151    0.24164 375.54541   1.662   0.0974
## GroupC_Intervention               0.16291    0.24277 375.54541   0.671   0.5026
## TimeD_M1_GM                      -0.03867    0.19861 235.43449  -0.195   0.8458
## GroupB_Controls:TimeD_M1_GM      -0.30728    0.24103 235.51016  -1.275   0.2036
## GroupC_Intervention:TimeD_M1_GM  -0.59125    0.24193 235.33298  -2.444   0.0153
##                                    
## (Intercept)                     ***
## GroupB_Controls                 .  
## GroupC_Intervention                
## TimeD_M1_GM                        
## GroupB_Controls:TimeD_M1_GM        
## GroupC_Intervention:TimeD_M1_GM *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TimeD_M1_GM -0.451  0.372  0.370              
## GB_C:TD_M1_  0.372 -0.451 -0.305 -0.824       
## GC_I:TD_M1_  0.370 -0.305 -0.451 -0.821  0.676
anova  (GM_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)    
## Group       4.3400  2.1700     2 254.05  2.4332 0.089803 .  
## Time       11.8930 11.8930     1 235.41 13.3353 0.000321 ***
## Group:Time  5.5615  2.7807     2 235.41  3.1180 0.046079 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
performance::r2(GM_MEM_B1M)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.568
##      Marginal R2: 0.039
parameters::standardise_parameters(GM_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                       | Std. Coef. |         95% CI
## -------------------------------------------------------------
## (Intercept)                     |      -0.03 | [-0.30,  0.25]
## GroupB_Controls                 |       0.28 | [-0.05,  0.61]
## GroupC_Intervention             |       0.11 | [-0.22,  0.45]
## TimeD_M1_GM                     |      -0.03 | [-0.30,  0.25]
## GroupB_Controls:TimeD_M1_GM     |      -0.21 | [-0.55,  0.12]
## GroupC_Intervention:TimeD_M1_GM |      -0.41 | [-0.75, -0.08]

Effect of time

Intervention group

GM_I_1m <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "D_M1_GM") %>% 
  filter(Group == "C_Intervention")
GM_I_long_1m <- GM_I_1m %>%
  pivot_longer(cols = c("A_PRE_GM", "D_M1_GM"),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_I_1m <- lmer(GM_Score ~ Time + (1|ID), data = GM_I_long_1m, REML = TRUE)
summary(GM_MEM_I_1m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_I_long_1m
## 
## REML criterion at convergence: 648.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9867 -0.5532 -0.1672  0.4949  2.5917 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 0.9846   0.9923  
##  Residual             0.9103   0.9541  
## Number of obs: 194, groups:  ID, 103
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)   2.9029     0.1356 153.6770   21.40  < 2e-16 ***
## TimeD_M1_GM  -0.6317     0.1395  94.7042   -4.53 1.72e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TimeD_M1_GM -0.467
anova  (GM_MEM_I_1m)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Time 18.677  18.677     1 94.704  20.517 1.722e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(GM_MEM_I_1m)
## # Standardization method: refit
## 
## Parameter   | Std. Coef. |         95% CI
## -----------------------------------------
## (Intercept) |       0.22 | [ 0.03,  0.41]
## TimeD_M1_GM |      -0.45 | [-0.64, -0.25]

Psychoeduction group

GM_C_1m <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "D_M1_GM") %>% 
  filter(Group == "B_Controls")
GM_C_long_1m <- GM_C_1m %>%
  pivot_longer(cols = c("A_PRE_GM", "D_M1_GM"),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_C_1m <- lmer(GM_Score ~ Time + (1|ID), data = GM_C_long_1m, REML = TRUE)
summary(GM_MEM_C_1m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_C_long_1m
## 
## REML criterion at convergence: 675.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.95946 -0.57782 -0.05595  0.48663  1.97716 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.2394   1.113   
##  Residual             0.8612   0.928   
## Number of obs: 199, groups:  ID, 106
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)   3.1415     0.1408 148.6405   22.32   <2e-16 ***
## TimeD_M1_GM  -0.3467     0.1344  95.3134   -2.58   0.0114 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TimeD_M1_GM -0.430
anova  (GM_MEM_C_1m)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Time 5.7344  5.7344     1 95.313  6.6585 0.01139 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(GM_MEM_C_1m)
## # Standardization method: refit
## 
## Parameter   | Std. Coef. |         95% CI
## -----------------------------------------
## (Intercept) |       0.11 | [-0.08,  0.30]
## TimeD_M1_GM |      -0.24 | [-0.42, -0.06]

Non-active control group

GM_EC_1m <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "D_M1_GM") %>% 
  filter(Group == "A_ECs")
GM_EC_long_1m <- GM_EC_1m %>%
  pivot_longer(cols = c(A_PRE_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")

GM_MEM_EC_1m <- lmer(GM_Score ~ Time + (1|ID), data = GM_EC_long_1m, REML = TRUE)
summary(GM_MEM_EC_1m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_EC_long_1m
## 
## REML criterion at convergence: 315.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.33742 -0.58035  0.03805  0.43870  2.84681 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.0070   1.0035  
##  Residual             0.9155   0.9568  
## Number of obs: 94, groups:  ID, 50
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  2.74000    0.19609 73.62077  13.973   <2e-16 ***
## TimeD_M1_GM -0.03961    0.20106 45.56175  -0.197    0.845    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TimeD_M1_GM -0.464
anova  (GM_MEM_EC_1m)
## Type III Analysis of Variance Table with Satterthwaite's method
##        Sum Sq  Mean Sq NumDF  DenDF F value Pr(>F)
## Time 0.035534 0.035534     1 45.562  0.0388 0.8447
parameters::standardise_parameters(GM_MEM_EC_1m)
## # Standardization method: refit
## 
## Parameter   | Std. Coef. |        95% CI
## ----------------------------------------
## (Intercept) |       0.02 | [-0.26, 0.30]
## TimeD_M1_GM |      -0.03 | [-0.32, 0.26]

Effect size

# GM - 1m
m.ef_GM_1m <- emmeans(GM_MEM_B1M, "Time", "Group")
eff_size(m.ef_GM_1m, sigma = sigma(GM_MEM_B1M), edf = df.residual(GM_MEM_B1M))
## Group = A_ECs:
##  contrast           effect.size    SE  df lower.CL upper.CL
##  A_PRE_GM - D_M1_GM      0.0409 0.210 376  -0.3727    0.455
## 
## Group = B_Controls:
##  contrast           effect.size    SE  df lower.CL upper.CL
##  A_PRE_GM - D_M1_GM      0.3663 0.145 376   0.0809    0.652
## 
## Group = C_Intervention:
##  contrast           effect.size    SE  df lower.CL upper.CL
##  A_PRE_GM - D_M1_GM      0.6670 0.148 376   0.3762    0.958
## 
## sigma used for effect sizes: 0.9444 
## Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
## Confidence level used: 0.95

H2b PHQ: difference in change in PHQ over time between groups

Baseline to 1W

PHQ_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "C_W1_PHQ_total")
PHQ_B1W_long <- PHQ_B1W %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")

PHQ_MEM_B1W <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1W_long, REML = TRUE)
summary(PHQ_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Group * Time + (1 | ID)
##    Data: PHQ_B1W_long
## 
## REML criterion at convergence: 3069.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.70427 -0.49822 -0.04073  0.44204  3.13898 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 24.53    4.953   
##  Residual             10.07    3.173   
## Number of obs: 510, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                              9.9600     0.8318 339.2793  11.974
## GroupB_Controls                         -0.5166     1.0091 339.2793  -0.512
## GroupC_Intervention                      0.7196     1.0138 339.2793   0.710
## TimeC_W1_PHQ_total                      -0.1012     0.6458 252.0371  -0.157
## GroupB_Controls:TimeC_W1_PHQ_total      -0.7976     0.7821 251.8019  -1.020
## GroupC_Intervention:TimeC_W1_PHQ_total  -1.3587     0.7858 251.8141  -1.729
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupB_Controls                           0.609    
## GroupC_Intervention                       0.478    
## TimeC_W1_PHQ_total                        0.876    
## GroupB_Controls:TimeC_W1_PHQ_total        0.309    
## GroupC_Intervention:TimeC_W1_PHQ_total    0.085 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_PHQ_ -0.375  0.309  0.308              
## GB_C:TC_W1_  0.309 -0.375 -0.254 -0.826       
## GC_I:TC_W1_  0.308 -0.254 -0.375 -0.822  0.679
anova  (PHQ_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)   
## Group      18.876   9.438     2 257.38  0.9375 0.39294   
## Time       75.005  75.005     1 251.69  7.4503 0.00679 **
## Group:Time 30.533  15.266     2 251.61  1.5164 0.22149   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
performance::r2(PHQ_MEM_B1W)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.713
##      Marginal R2: 0.015
parameters::standardise_parameters(PHQ_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |       0.07 | [-0.21, 0.34]
## GroupB_Controls                        |      -0.09 | [-0.42, 0.25]
## GroupC_Intervention                    |       0.12 | [-0.22, 0.46]
## TimeC_W1_PHQ_total                     |      -0.02 | [-0.23, 0.20]
## GroupB_Controls:TimeC_W1_PHQ_total     |      -0.13 | [-0.39, 0.13]
## GroupC_Intervention:TimeC_W1_PHQ_total |      -0.23 | [-0.49, 0.03]

Baseline to 1M

PHQ_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "D_M1_PHQ_total")
PHQ_B1M_long <- PHQ_B1M %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")

PHQ_MEM_B1M <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1M_long, REML = TRUE)
summary(PHQ_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Group * Time + (1 | ID)
##    Data: PHQ_B1M_long
## 
## REML criterion at convergence: 3028.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.64448 -0.55044 -0.09744  0.49965  2.79846 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 21.46    4.633   
##  Residual             15.15    3.892   
## Number of obs: 487, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                              9.9600     0.8557 367.8141  11.640
## GroupB_Controls                         -0.5166     1.0381 367.8141  -0.498
## GroupC_Intervention                      0.7196     1.0429 367.8141   0.690
## TimeD_M1_PHQ_total                       0.6244     0.8271 240.0648   0.755
## GroupB_Controls:TimeD_M1_PHQ_total      -1.8086     0.9995 239.3565  -1.810
## GroupC_Intervention:TimeD_M1_PHQ_total  -2.9746     1.0045 239.4295  -2.961
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupB_Controls                         0.61902    
## GroupC_Intervention                     0.49062    
## TimeD_M1_PHQ_total                      0.45104    
## GroupB_Controls:TimeD_M1_PHQ_total      0.07161 .  
## GroupC_Intervention:TimeD_M1_PHQ_total  0.00337 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_PHQ_ -0.428  0.353  0.351              
## GB_C:TD_M1_  0.354 -0.430 -0.291 -0.828       
## GC_I:TD_M1_  0.352 -0.291 -0.430 -0.823  0.681
anova  (PHQ_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Group       35.957  17.979     2 258.66  1.1869 0.30684  
## Time        96.897  96.897     1 239.05  6.3966 0.01208 *
## Group:Time 134.059  67.029     2 238.81  4.4250 0.01297 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
performance::r2(PHQ_MEM_B1M)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.597
##      Marginal R2: 0.026
parameters::standardise_parameters(PHQ_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.09 | [-0.18,  0.37]
## GroupB_Controls                        |      -0.08 | [-0.42,  0.25]
## GroupC_Intervention                    |       0.12 | [-0.22,  0.45]
## TimeD_M1_PHQ_total                     |       0.10 | [-0.16,  0.37]
## GroupB_Controls:TimeD_M1_PHQ_total     |      -0.30 | [-0.62,  0.03]
## GroupC_Intervention:TimeD_M1_PHQ_total |      -0.49 | [-0.81, -0.16]

Effect of time

Intervention group

PHQ_I_1m <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "D_M1_PHQ_total") %>% 
  filter(Group == "C_Intervention")
PHQ_I_long_1m <- PHQ_I_1m %>%
  pivot_longer(cols = c("A_PRE_PHQ_total", "D_M1_PHQ_total"),
               names_to = "Time",
               values_to = "PHQ_Score")

PHQ_MEM_I_1m <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_I_long_1m, REML = TRUE)
summary(PHQ_MEM_I_1m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Time + (1 | ID)
##    Data: PHQ_I_long_1m
## 
## REML criterion at convergence: 1192.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.30041 -0.55128 -0.08312  0.51684  2.64008 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 20.39    4.516   
##  Residual             13.80    3.714   
## Number of obs: 194, groups:  ID, 103
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)         10.6796     0.5761 145.9837   18.54  < 2e-16 ***
## TimeD_M1_PHQ_total  -2.3508     0.5441  95.7256   -4.32 3.81e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmD_M1_PHQ_ -0.427
anova  (PHQ_MEM_I_1m)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Time 257.49  257.49     1 95.726  18.663 3.811e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(PHQ_MEM_I_1m)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.18 | [-0.01,  0.37]
## TimeD_M1_PHQ_total |      -0.39 | [-0.57, -0.21]

Psychoeducation group

PHQ_C_1m <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "D_M1_PHQ_total") %>% 
  filter(Group == "B_Controls")
PHQ_C_long_1m <- PHQ_C_1m %>%
  pivot_longer(cols = c("A_PRE_PHQ_total", "D_M1_PHQ_total"),
               names_to = "Time",
               values_to = "PHQ_Score")

PHQ_MEM_C_1m <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_C_long_1m, REML = TRUE)
summary(PHQ_MEM_C_1m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Time + (1 | ID)
##    Data: PHQ_C_long_1m
## 
## REML criterion at convergence: 1265.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3651 -0.6137 -0.1412  0.5123  2.5367 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 19.77    4.447   
##  Residual             18.70    4.325   
## Number of obs: 200, groups:  ID, 106
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)          9.4434     0.6025 159.5745  15.675   <2e-16 ***
## TimeD_M1_PHQ_total  -1.1978     0.6221  98.5457  -1.926    0.057 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmD_M1_PHQ_ -0.471
anova  (PHQ_MEM_C_1m)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Time 69.341  69.341     1 98.546  3.7077 0.05704 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(PHQ_MEM_C_1m)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |        95% CI
## -----------------------------------------------
## (Intercept)        |       0.10 | [-0.09, 0.29]
## TimeD_M1_PHQ_total |      -0.19 | [-0.39, 0.00]

Non-active control group

PHQ_EC_1m <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "D_M1_PHQ_total") %>% 
  filter(Group == "A_ECs")
PHQ_EC_long_1m <- PHQ_EC_1m %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")

PHQ_MEM_EC_1m <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_EC_long_1m, REML = TRUE)
summary(PHQ_MEM_EC_1m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Time + (1 | ID)
##    Data: PHQ_EC_long_1m
## 
## REML criterion at convergence: 564.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8858 -0.4652 -0.1043  0.5389  1.7733 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 27.42    5.236   
##  Residual             10.19    3.192   
## Number of obs: 93, groups:  ID, 50
## 
## Fixed effects:
##                    Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)          9.9600     0.8673 62.0927   11.48   <2e-16 ***
## TimeD_M1_PHQ_total   0.6818     0.6819 43.8551    1.00    0.323    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmD_M1_PHQ_ -0.345
anova  (PHQ_MEM_EC_1m)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
## Time 10.188  10.188     1 43.855  0.9999 0.3228
parameters::standardise_parameters(PHQ_MEM_EC_1m)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |        95% CI
## -----------------------------------------------
## (Intercept)        |      -0.03 | [-0.31, 0.25]
## TimeD_M1_PHQ_total |       0.11 | [-0.11, 0.33]

Effect size

# phq - 1m
m.ef_phq_1m <- emmeans(PHQ_MEM_B1M, "Time", "Group")
eff_size(m.ef_phq_1m, sigma = sigma(PHQ_MEM_B1M), edf = df.residual(PHQ_MEM_B1M))
## Group = A_ECs:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_PHQ_total - D_M1_PHQ_total      -0.160 0.213 366  -0.5786    0.258
## 
## Group = B_Controls:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_PHQ_total - D_M1_PHQ_total       0.304 0.145 366   0.0201    0.588
## 
## Group = C_Intervention:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_PHQ_total - D_M1_PHQ_total       0.604 0.148 366   0.3132    0.894
## 
## sigma used for effect sizes: 3.892 
## Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
## Confidence level used: 0.95

H2b GAD: difference in change in GAD over time between groups

Baseline to 1W

GAD_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "C_W1_GAD_total")
GAD_B1W_long <- GAD_B1W %>%
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")

GAD_MEM_B1W <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_B1W_long, REML = TRUE)
summary(GAD_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Group * Time + (1 | ID)
##    Data: GAD_B1W_long
## 
## REML criterion at convergence: 3025.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0453 -0.4584 -0.0843  0.4595  3.1840 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 22.202   4.712   
##  Residual              9.297   3.049   
## Number of obs: 510, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                              8.0200     0.7937 340.7093  10.104
## GroupB_Controls                          0.4706     0.9629 340.7093   0.489
## GroupC_Intervention                      1.2616     0.9674 340.7093   1.304
## TimeC_W1_GAD_total                       0.3104     0.6206 252.2282   0.500
## GroupB_Controls:TimeC_W1_GAD_total      -0.9286     0.7516 251.9901  -1.236
## GroupC_Intervention:TimeC_W1_GAD_total  -1.3167     0.7551 252.0024  -1.744
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupB_Controls                          0.6254    
## GroupC_Intervention                      0.1931    
## TimeC_W1_GAD_total                       0.6174    
## GroupB_Controls:TimeC_W1_GAD_total       0.2178    
## GroupC_Intervention:TimeC_W1_GAD_total   0.0824 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_GAD_ -0.378  0.311  0.310              
## GB_C:TC_W1_  0.312 -0.378 -0.256 -0.826       
## GC_I:TC_W1_  0.310 -0.256 -0.378 -0.822  0.679
anova  (GAD_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
## Group       7.671  3.8355     2 257.54  0.4125 0.6624
## Time       21.411 21.4112     1 251.88  2.3030 0.1304
## Group:Time 28.314 14.1572     2 251.80  1.5228 0.2201
performance::r2(GAD_MEM_B1W)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.707
##      Marginal R2: 0.007
parameters::standardise_parameters(GAD_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |      -0.07 | [-0.35, 0.20]
## GroupB_Controls                        |       0.08 | [-0.25, 0.42]
## GroupC_Intervention                    |       0.22 | [-0.11, 0.56]
## TimeC_W1_GAD_total                     |       0.06 | [-0.16, 0.27]
## GroupB_Controls:TimeC_W1_GAD_total     |      -0.17 | [-0.43, 0.10]
## GroupC_Intervention:TimeC_W1_GAD_total |      -0.23 | [-0.50, 0.03]

Baseline to 1M

GAD_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "D_M1_GAD_total")
GAD_B1M_long <- GAD_B1M %>%
  pivot_longer(cols = c(A_PRE_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")

GAD_MEM_B1M <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_B1M_long, REML = TRUE)
summary(GAD_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Group * Time + (1 | ID)
##    Data: GAD_B1M_long
## 
## REML criterion at convergence: 2951
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.26184 -0.51370 -0.07266  0.47118  2.72886 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 19.51    4.417   
##  Residual             12.64    3.555   
## Number of obs: 486, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                              8.0200     0.8018 361.1090  10.002
## GroupB_Controls                          0.4706     0.9727 361.1090   0.484
## GroupC_Intervention                      1.2616     0.9772 361.1090   1.291
## TimeD_M1_GAD_total                       1.2587     0.7560 238.1128   1.665
## GroupB_Controls:TimeD_M1_GAD_total      -2.2184     0.9147 237.6716  -2.425
## GroupC_Intervention:TimeD_M1_GAD_total  -3.0251     0.9181 237.5072  -3.295
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupB_Controls                         0.62884    
## GroupC_Intervention                     0.19755    
## TimeD_M1_GAD_total                      0.09724 .  
## GroupB_Controls:TimeD_M1_GAD_total      0.01605 *  
## GroupC_Intervention:TimeD_M1_GAD_total  0.00113 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_GAD_ -0.417  0.344  0.342              
## GB_C:TD_M1_  0.345 -0.418 -0.283 -0.826       
## GC_I:TD_M1_  0.343 -0.283 -0.418 -0.823  0.681
anova  (GAD_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Group        7.574   3.787     2 258.32  0.2997 0.741299   
## Time        24.554  24.554     1 237.32  1.9431 0.164633   
## Group:Time 137.971  68.986     2 237.14  5.4594 0.004808 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
performance::r2(GAD_MEM_B1M)
## # R2 for Mixed Models
## 
##   Conditional R2: 0.613
##      Marginal R2: 0.016
parameters::standardise_parameters(GAD_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |      -0.05 | [-0.32,  0.23]
## GroupB_Controls                        |       0.08 | [-0.25,  0.42]
## GroupC_Intervention                    |       0.22 | [-0.12,  0.56]
## TimeD_M1_GAD_total                     |       0.22 | [-0.04,  0.48]
## GroupB_Controls:TimeD_M1_GAD_total     |      -0.39 | [-0.70, -0.07]
## GroupC_Intervention:TimeD_M1_GAD_total |      -0.53 | [-0.85, -0.21]

Effect of time

Intervention group

GAD_I <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "D_M1_GAD_total") %>% 
  filter(Group == "C_Intervention")
GAD_I_long <- GAD_I %>%
  pivot_longer(cols = c("A_PRE_GAD_total", "D_M1_GAD_total"),
               names_to = "Time",
               values_to = "GAD_Score")

GAD_MEM_I <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_I_long, REML = TRUE)
summary(GAD_MEM_I)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Time + (1 | ID)
##    Data: GAD_I_long
## 
## REML criterion at convergence: 1163.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.87146 -0.49947 -0.05659  0.46378  2.64376 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 20.51    4.529   
##  Residual             10.71    3.272   
## Number of obs: 194, groups:  ID, 103
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)          9.2816     0.5505 138.8771  16.859  < 2e-16 ***
## TimeD_M1_GAD_total  -1.7738     0.4802  94.9178  -3.694 0.000369 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmD_M1_GAD_ -0.393
anova  (GAD_MEM_I)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Time 146.07  146.07     1 94.918  13.644 0.0003692 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(GAD_MEM_I)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.14 | [-0.05,  0.33]
## TimeD_M1_GAD_total |      -0.31 | [-0.48, -0.15]

Psychoeducation group

GAD_C <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "D_M1_GAD_total") %>% 
  filter(Group == "B_Controls")
GAD_C_long <- GAD_C %>%
  pivot_longer(cols = c("A_PRE_GAD_total", "D_M1_GAD_total"),
               names_to = "Time",
               values_to = "GAD_Score")

GAD_MEM_C <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_C_long, REML = TRUE)
summary(GAD_MEM_C)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Time + (1 | ID)
##    Data: GAD_C_long
## 
## REML criterion at convergence: 1228
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0529 -0.5318 -0.1244  0.5077  2.5684 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 19.46    4.412   
##  Residual             14.73    3.838   
## Number of obs: 199, groups:  ID, 106
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)          8.4906     0.5679 151.5975  14.950   <2e-16 ***
## TimeD_M1_GAD_total  -0.9713     0.5553  96.1529  -1.749   0.0835 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmD_M1_GAD_ -0.441
anova  (GAD_MEM_C)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Time 45.057  45.057     1 96.153  3.0594 0.08346 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(GAD_MEM_C)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |        95% CI
## -----------------------------------------------
## (Intercept)        |       0.09 | [-0.10, 0.28]
## TimeD_M1_GAD_total |      -0.17 | [-0.35, 0.02]

Non-active control group

GAD_EC <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "D_M1_GAD_total") %>% 
  filter(Group == "A_ECs")
GAD_EC_long <- GAD_EC %>%
  pivot_longer(cols = c(A_PRE_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")

GAD_MEM_EC <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_EC_long, REML = TRUE)
summary(GAD_MEM_EC)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Time + (1 | ID)
##    Data: GAD_EC_long
## 
## REML criterion at convergence: 556.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.29057 -0.48426 -0.04936  0.43148  2.49256 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 17.32    4.162   
##  Residual             12.26    3.501   
## Number of obs: 93, groups:  ID, 50
## 
## Fixed effects:
##                    Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)          8.0200     0.7692 70.4944  10.427 6.29e-16 ***
## TimeD_M1_GAD_total   1.2538     0.7440 45.7110   1.685   0.0988 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## TmD_M1_GAD_ -0.428
anova  (GAD_MEM_EC)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Time 34.809  34.809     1 45.711  2.8398 0.09877 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(GAD_MEM_EC)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |        95% CI
## -----------------------------------------------
## (Intercept)        |      -0.09 | [-0.37, 0.18]
## TimeD_M1_GAD_total |       0.23 | [-0.04, 0.50]

Effect size

# gad - 1m
m.ef_gad_1m <- emmeans(GAD_MEM_B1M, "Time", "Group")
eff_size(m.ef_gad_1m, sigma = sigma(GAD_MEM_B1M), edf = df.residual(GAD_MEM_B1M))
## Group = A_ECs:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_GAD_total - D_M1_GAD_total      -0.354 0.213 359  -0.7731   0.0649
## 
## Group = B_Controls:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_GAD_total - D_M1_GAD_total       0.270 0.145 359  -0.0155   0.5555
## 
## Group = C_Intervention:
##  contrast                         effect.size    SE  df lower.CL upper.CL
##  A_PRE_GAD_total - D_M1_GAD_total       0.497 0.147 359   0.2069   0.7869
## 
## sigma used for effect sizes: 3.555 
## Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
## Confidence level used: 0.95

Hypothesis 3

# Baseline to 1W/1M changes (creating new columns)
changeinvariables <- mutate(Full_data_all,
                      IUS_BP_change = B_POST_IUS_total - A_PRE_IUS_total,
                      IUS_B1W_change = C_W1_IUS_total - A_PRE_IUS_total,
                      IUS_B1M_change = D_M1_IUS_total - A_PRE_IUS_total,
                      PHQ_B1W_change = C_W1_PHQ_total - A_PRE_PHQ_total,
                      PHQ_B1M_change = D_M1_PHQ_total - A_PRE_PHQ_total,
                      GAD_B1W_change = C_W1_GAD_total - A_PRE_GAD_total,
                      GAD_B1M_change = D_M1_GAD_total - A_PRE_GAD_total,
                      Mood_BP_change = B_POST_mood_mean - A_PRE_mood_mean,
                      Mood_B1W_change = C_W1_mood_mean - A_PRE_mood_mean,
                      Mood_B1M_change = D_M1_mood_mean - A_PRE_mood_mean)
# Separating out each group + excluding outliers
Intervention_group <- changeinvariables %>% 
  filter(Group == "C_Intervention") %>% 
  filter(IUS_B1W_change != "-34", IUS_B1W_change != "24", IUS_B1W_change != "-22", IUS_B1W_change != "-21")

Psychoed_group <- changeinvariables %>% 
  filter(Group == "B_Controls") %>% 
  filter(IUS_B1W_change != "18")

ECs_group <- changeinvariables %>% 
  filter(Group == "A_ECs")%>% 
  filter(IUS_B1M_change != "-11", IUS_B1M_change != "14")

Correlations

Depression at 1 month

# Only significant for the intervention group
cor.test(Intervention_group$IUS_B1M_change, Intervention_group$PHQ_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  Intervention_group$IUS_B1M_change and Intervention_group$PHQ_B1M_change
## t = 2.657, df = 82, p-value = 0.009475
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.0714621 0.4677073
## sample estimates:
##       cor 
## 0.2815437
cor.test(Psychoed_group$IUS_B1M_change, Psychoed_group$PHQ_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  Psychoed_group$IUS_B1M_change and Psychoed_group$PHQ_B1M_change
## t = 1.8879, df = 89, p-value = 0.0623
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.01012637  0.38655121
## sample estimates:
##       cor 
## 0.1962277
cor.test(ECs_group$IUS_B1M_change, ECs_group$PHQ_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  ECs_group$IUS_B1M_change and ECs_group$PHQ_B1M_change
## t = 1.861, df = 39, p-value = 0.0703
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02418946  0.54532414
## sample estimates:
##       cor 
## 0.2855863

Anxiety at 1 month

# Significant for the intervention and psychoeducation groups (but strongest for intervention)
cor.test(Intervention_group$IUS_B1M_change, Intervention_group$GAD_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  Intervention_group$IUS_B1M_change and Intervention_group$GAD_B1M_change
## t = 4.4749, df = 82, p-value = 2.441e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2526257 0.6003940
## sample estimates:
##       cor 
## 0.4430258
cor.test(Psychoed_group$IUS_B1M_change, Psychoed_group$GAD_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  Psychoed_group$IUS_B1M_change and Psychoed_group$GAD_B1M_change
## t = 3.3444, df = 88, p-value = 0.001213
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1383388 0.5076004
## sample estimates:
##       cor 
## 0.3358094
cor.test(ECs_group$IUS_B1M_change, ECs_group$GAD_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  ECs_group$IUS_B1M_change and ECs_group$GAD_B1M_change
## t = 1.8079, df = 39, p-value = 0.07834
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.03234452  0.53956411
## sample estimates:
##      cor 
## 0.278073

H3: IUS mediating change in PHQ over time between groups

1 week: Group to change in PHQ via change in IUS

Mediation.PHQchange.1W <-
  '#regressions
PHQ_B1W_change ~ c1 * Group  
IUS_B1W_change ~ a1 * Group 
PHQ_B1W_change ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.PHQ.1W <- lavaan::sem(Mediation.PHQchange.1W, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.PHQ.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PHQ_B1W_change ~                                                      
##     Group     (c1)   -0.096    0.086   -1.108    0.268   -0.096   -0.071
##   IUS_B1W_change ~                                                      
##     Group     (a1)   -0.374    0.076   -4.913    0.000   -0.374   -0.278
##   PHQ_B1W_change ~                                                      
##     IUS_B1W_c (b1)    0.128    0.076    1.686    0.092    0.128    0.128
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1W_change    0.211    0.190    1.109    0.268    0.211    0.211
##    .IUS_B1W_change    0.826    0.161    5.135    0.000    0.826    0.827
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1W_change    0.970    0.124    7.850    0.000    0.970    0.974
##    .IUS_B1W_change    0.920    0.116    7.943    0.000    0.920    0.923
## 
## R-Square:
##                    Estimate
##     PHQ_B1W_change    0.026
##     IUS_B1W_change    0.077
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.048    0.029   -1.665    0.096   -0.048   -0.036
##     direct           -0.096    0.086   -1.108    0.268   -0.096   -0.071
##     total            -0.144    0.082   -1.754    0.079   -0.144   -0.107

1 month: Group to change in PHQ via change in IUS

Mediation.PHQchange.1M <-
  '#regressions
PHQ_B1M_change ~ c1 * Group  
IUS_B1M_change ~ a1 * Group 
PHQ_B1M_change ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.PHQ.1M <- lavaan::sem(Mediation.PHQchange.1M, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.PHQ.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PHQ_B1M_change ~                                                      
##     Group     (c1)   -0.174    0.087   -1.994    0.046   -0.174   -0.129
##   IUS_B1M_change ~                                                      
##     Group     (a1)   -0.413    0.076   -5.465    0.000   -0.413   -0.307
##   PHQ_B1M_change ~                                                      
##     IUS_B1M_c (b1)    0.237    0.087    2.717    0.007    0.237    0.236
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1M_change    0.383    0.196    1.950    0.051    0.383    0.383
##    .IUS_B1M_change    0.911    0.163    5.574    0.000    0.911    0.913
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1M_change    0.907    0.104    8.708    0.000    0.907    0.909
##    .IUS_B1M_change    0.901    0.101    8.897    0.000    0.901    0.906
## 
## R-Square:
##                    Estimate
##     PHQ_B1M_change    0.091
##     IUS_B1M_change    0.094
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.098    0.040   -2.426    0.015   -0.098   -0.073
##     direct           -0.174    0.087   -1.994    0.046   -0.174   -0.129
##     total            -0.272    0.078   -3.464    0.001   -0.272   -0.202

H3: IUS mediating change in GAD over time between groups

1 week: Group to change in GAD via change in IUS

Mediation.GADchange.1W <-
  '#regressions
GAD_B1W_change ~ c1 * Group  
IUS_B1W_change ~ a1 * Group 
GAD_B1W_change ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.GAD.1W <- sem(Mediation.GADchange.1W, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.GAD.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   GAD_B1W_change ~                                                      
##     Group     (c1)   -0.059    0.083   -0.713    0.476   -0.059   -0.044
##   IUS_B1W_change ~                                                      
##     Group     (a1)   -0.374    0.076   -4.913    0.000   -0.374   -0.278
##   GAD_B1W_change ~                                                      
##     IUS_B1W_c (b1)    0.212    0.082    2.592    0.010    0.212    0.212
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1W_change    0.130    0.178    0.731    0.465    0.130    0.130
##    .IUS_B1W_change    0.826    0.161    5.135    0.000    0.826    0.827
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1W_change    0.944    0.138    6.823    0.000    0.944    0.948
##    .IUS_B1W_change    0.920    0.116    7.943    0.000    0.920    0.923
## 
## R-Square:
##                    Estimate
##     GAD_B1W_change    0.052
##     IUS_B1W_change    0.077
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.079    0.036   -2.235    0.025   -0.079   -0.059
##     direct           -0.059    0.083   -0.713    0.476   -0.059   -0.044
##     total            -0.139    0.079   -1.759    0.079   -0.139   -0.103

1 month: Group to change in GAD via change in IUS

Mediation.GADchange.1M <-
  '#regressions
GAD_B1M_change ~ c1 * Group  
IUS_B1M_change ~ a1 * Group 
GAD_B1M_change ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.GAD.1M <- sem(Mediation.GADchange.1M, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.GAD.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   GAD_B1M_change ~                                                      
##     Group     (c1)   -0.147    0.093   -1.587    0.113   -0.147   -0.109
##   IUS_B1M_change ~                                                      
##     Group     (a1)   -0.413    0.076   -5.463    0.000   -0.413   -0.307
##   GAD_B1M_change ~                                                      
##     IUS_B1M_c (b1)    0.338    0.091    3.714    0.000    0.338    0.337
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1M_change    0.320    0.217    1.473    0.141    0.320    0.319
##    .IUS_B1M_change    0.909    0.163    5.566    0.000    0.909    0.912
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1M_change    0.854    0.104    8.239    0.000    0.854    0.852
##    .IUS_B1M_change    0.901    0.101    8.900    0.000    0.901    0.906
## 
## R-Square:
##                    Estimate
##     GAD_B1M_change    0.148
##     IUS_B1M_change    0.094
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.140    0.046   -3.048    0.002   -0.140   -0.103
##     direct           -0.147    0.093   -1.587    0.113   -0.147   -0.109
##     total            -0.287    0.084   -3.405    0.001   -0.287   -0.212

Exploratory analyses

H4: Growth mindsets moderating the association between group and PHQ changes across time

# 1 week
moderation_GM_PHQ_1W <- lm(PHQ_B1W_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_PHQ_1W)
## 
## Call:
## lm(formula = PHQ_B1W_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -18.1562  -2.2737   0.4147   2.7263  12.4817 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                   -2.2237     1.4201  -1.566   0.1187  
## GroupB_Controls                0.5795     1.7734   0.327   0.7441  
## GroupC_Intervention            1.8281     1.7812   1.026   0.3058  
## A_PRE_GM                       0.7632     0.4597   1.660   0.0982 .
## GroupB_Controls:A_PRE_GM      -0.5337     0.5529  -0.965   0.3354  
## GroupC_Intervention:A_PRE_GM  -1.1252     0.5673  -1.983   0.0485 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.481 on 245 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.02936,    Adjusted R-squared:  0.009554 
## F-statistic: 1.482 on 5 and 245 DF,  p-value: 0.1961
anova(moderation_GM_PHQ_1W)
## Analysis of Variance Table
## 
## Response: PHQ_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   58.5  29.234  1.4560 0.2352
## A_PRE_GM         1    6.3   6.310  0.3143 0.5756
## Group:A_PRE_GM   2   84.0  42.016  2.0926 0.1256
## Residuals      245 4919.1  20.078
# 1 month
moderation_GM_PHQ_1M <- lm(PHQ_B1M_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_PHQ_1M)
## 
## Call:
## lm(formula = PHQ_B1M_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.9147  -2.8178  -0.2693   2.9100  19.5368 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)                    0.3893     1.8426   0.211    0.833
## GroupB_Controls               -3.2169     2.3213  -1.386    0.167
## GroupC_Intervention           -2.5702     2.2870  -1.124    0.262
## A_PRE_GM                       0.1475     0.6019   0.245    0.807
## GroupB_Controls:A_PRE_GM       0.4009     0.7291   0.550    0.583
## GroupC_Intervention:A_PRE_GM  -0.2152     0.7397  -0.291    0.771
## 
## Residual standard error: 5.538 on 222 degrees of freedom
##   (31 observations deleted due to missingness)
## Multiple R-squared:  0.04929,    Adjusted R-squared:  0.02788 
## F-statistic: 2.302 on 5 and 222 DF,  p-value: 0.04579
anova(moderation_GM_PHQ_1M)
## Analysis of Variance Table
## 
## Response: PHQ_B1M_change
##                 Df Sum Sq Mean Sq F value   Pr(>F)   
## Group            2  295.9 147.948  4.8242 0.008894 **
## A_PRE_GM         1   23.5  23.462  0.7650 0.382702   
## Group:A_PRE_GM   2   33.6  16.824  0.5486 0.578536   
## Residuals      222 6808.2  30.668                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

H4: Growth mindsets moderating the association between group and GAD changes across time

# 1 week
moderation_GM_GAD_1W <- lm(GAD_B1W_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_GAD_1W)
## 
## Call:
## lm(formula = GAD_B1W_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.697  -1.974   0.186   2.062  14.731 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                   -1.4596     1.3623  -1.071   0.2850  
## GroupB_Controls                2.3146     1.7013   1.360   0.1749  
## GroupC_Intervention            1.3013     1.7088   0.762   0.4471  
## A_PRE_GM                       0.6368     0.4410   1.444   0.1500  
## GroupB_Controls:A_PRE_GM      -1.1092     0.5304  -2.091   0.0375 *
## GroupC_Intervention:A_PRE_GM  -0.9231     0.5443  -1.696   0.0911 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.299 on 245 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.03314,    Adjusted R-squared:  0.01341 
## F-statistic:  1.68 on 5 and 245 DF,  p-value: 0.1401
anova(moderation_GM_GAD_1W)
## Analysis of Variance Table
## 
## Response: GAD_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   54.3  27.131  1.4683 0.2323
## A_PRE_GM         1   17.3  17.305  0.9366 0.3341
## Group:A_PRE_GM   2   83.6  41.801  2.2623 0.1063
## Residuals      245 4527.0  18.478
# 1 month
moderation_GM_GAD_1M <- lm(GAD_B1M_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_GAD_1M)
## 
## Call:
## lm(formula = GAD_B1M_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.3797  -2.6023   0.1837   2.5306  17.2648 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)                    0.3786     1.6842   0.225    0.822
## GroupB_Controls               -1.5825     2.1219  -0.746    0.457
## GroupC_Intervention           -1.2153     2.0904  -0.581    0.562
## A_PRE_GM                       0.3566     0.5502   0.648    0.518
## GroupB_Controls:A_PRE_GM      -0.2399     0.6668  -0.360    0.719
## GroupC_Intervention:A_PRE_GM  -0.7035     0.6761  -1.041    0.299
## 
## Residual standard error: 5.062 on 221 degrees of freedom
##   (32 observations deleted due to missingness)
## Multiple R-squared:  0.05464,    Adjusted R-squared:  0.03325 
## F-statistic: 2.554 on 5 and 221 DF,  p-value: 0.02854
anova(moderation_GM_GAD_1M)
## Analysis of Variance Table
## 
## Response: GAD_B1M_change
##                 Df Sum Sq Mean Sq F value   Pr(>F)   
## Group            2  294.1 147.030  5.7385 0.003718 **
## A_PRE_GM         1    0.1   0.092  0.0036 0.952337   
## Group:A_PRE_GM   2   33.1  16.547  0.6458 0.525220   
## Residuals      221 5662.3  25.621                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

H5: Association between IUS and baseline functional impairment

PRE_IUS_FI_lm <- lm(A_PRE_IUS_total ~ A_PRE_FI_total, data = Full_data_all)
summary(PRE_IUS_FI_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_FI_total, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.1561  -4.1561   0.3806   5.0026  15.3806 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     29.1074     1.2521   23.25   <2e-16 ***
## A_PRE_FI_total   1.2927     0.1148   11.26   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.265 on 257 degrees of freedom
## Multiple R-squared:  0.3304, Adjusted R-squared:  0.3278 
## F-statistic: 126.8 on 1 and 257 DF,  p-value: < 2.2e-16
anova(PRE_IUS_FI_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## A_PRE_FI_total   1  6692.6  6692.6   126.8 < 2.2e-16 ***
## Residuals      257 13565.1    52.8                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cor.test(Full_data_all$A_PRE_IUS_total, Full_data_all$A_PRE_FI_total, method=c("pearson"))
## 
##  Pearson's product-moment correlation
## 
## data:  Full_data_all$A_PRE_IUS_total and Full_data_all$A_PRE_FI_total
## t = 11.26, df = 257, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4870121 0.6510571
## sample estimates:
##       cor 
## 0.5747811

H5: Change in functional impairment over time across groups

Baseline to 1W

FI_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_FI_total", "C_W1_FI_total")
FI_B1W_long <- FI_B1W %>%
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")

FI_MEM_B1W <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_B1W_long, REML = TRUE)
summary(FI_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FI_Score ~ Group * Time + (1 | ID)
##    Data: FI_B1W_long
## 
## REML criterion at convergence: 2740.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.86590 -0.50210 -0.00798  0.48671  2.80124 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 9.039    3.007   
##  Residual             6.577    2.565   
## Number of obs: 510, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error        df t value
## (Intercept)                             9.86000    0.55886 380.24977  17.643
## GroupB_Controls                         0.16830    0.67797 380.24977   0.248
## GroupC_Intervention                     0.61573    0.68113 380.24977   0.904
## TimeC_W1_FI_total                       0.09842    0.52127 252.70546   0.189
## GroupB_Controls:TimeC_W1_FI_total      -0.30400    0.63140 252.38770  -0.481
## GroupC_Intervention:TimeC_W1_FI_total  -1.05347    0.63439 252.40409  -1.661
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## GroupB_Controls                          0.804    
## GroupC_Intervention                      0.367    
## TimeC_W1_FI_total                        0.850    
## GroupB_Controls:TimeC_W1_FI_total        0.631    
## GroupC_Intervention:TimeC_W1_FI_total    0.098 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_FI_t -0.452  0.372  0.370              
## GB_C:TC_W1_  0.373 -0.452 -0.306 -0.826       
## GC_I:TC_W1_  0.371 -0.306 -0.452 -0.822  0.678
anova  (FI_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
## Group       0.2043  0.1022     2 256.87  0.0155 0.9846
## Time       14.0165 14.0165     1 252.24  2.1312 0.1456
## Group:Time 23.2052 11.6026     2 252.13  1.7642 0.1734
parameters::standardise_parameters(FI_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                             | Std. Coef. |        95% CI
## ------------------------------------------------------------------
## (Intercept)                           |      -0.03 | [-0.30, 0.25]
## GroupB_Controls                       |       0.04 | [-0.29, 0.38]
## GroupC_Intervention                   |       0.16 | [-0.18, 0.49]
## TimeC_W1_FI_total                     |       0.02 | [-0.23, 0.28]
## GroupB_Controls:TimeC_W1_FI_total     |      -0.08 | [-0.39, 0.24]
## GroupC_Intervention:TimeC_W1_FI_total |      -0.27 | [-0.58, 0.05]

Baseline to 1M

FI_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_FI_total", "D_M1_FI_total")
FI_B1M_long <- FI_B1M %>%
  pivot_longer(cols = c(A_PRE_FI_total, D_M1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")

FI_MEM_B1M <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_B1M_long, REML = TRUE)
summary(FI_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FI_Score ~ Group * Time + (1 | ID)
##    Data: FI_B1M_long
## 
## REML criterion at convergence: 2627.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.39593 -0.49332 -0.00673  0.48809  2.50102 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 10.482   3.238   
##  Residual              5.891   2.427   
## Number of obs: 489, groups:  ID, 259
## 
## Fixed effects:
##                                       Estimate Std. Error       df t value
## (Intercept)                             9.8600     0.5722 351.6690  17.230
## GroupB_Controls                         0.1683     0.6942 351.6690   0.242
## GroupC_Intervention                     0.6157     0.6974 351.6690   0.883
## TimeD_M1_FI_total                      -0.1205     0.5119 237.2371  -0.235
## GroupB_Controls:TimeD_M1_FI_total      -0.5991     0.6203 237.0764  -0.966
## GroupC_Intervention:TimeD_M1_FI_total  -0.9938     0.6226 236.9204  -1.596
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## GroupB_Controls                          0.809    
## GroupC_Intervention                      0.378    
## TimeD_M1_FI_total                        0.814    
## GroupB_Controls:TimeD_M1_FI_total        0.335    
## GroupC_Intervention:TimeD_M1_FI_total    0.112    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_FI_t -0.402  0.332  0.330              
## GB_C:TD_M1_  0.332 -0.403 -0.272 -0.825       
## GC_I:TD_M1_  0.331 -0.273 -0.403 -0.822  0.678
anova  (FI_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Group       1.403   0.702     2 256.73  0.1191 0.887779   
## Time       44.086  44.086     1 236.88  7.4834 0.006698 **
## Group:Time 15.160   7.580     2 236.79  1.2867 0.278109   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
parameters::standardise_parameters(FI_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                             | Std. Coef. |        95% CI
## ------------------------------------------------------------------
## (Intercept)                           |       0.01 | [-0.27, 0.29]
## GroupB_Controls                       |       0.04 | [-0.29, 0.38]
## GroupC_Intervention                   |       0.15 | [-0.19, 0.49]
## TimeD_M1_FI_total                     |      -0.03 | [-0.28, 0.22]
## GroupB_Controls:TimeD_M1_FI_total     |      -0.15 | [-0.45, 0.15]
## GroupC_Intervention:TimeD_M1_FI_total |      -0.25 | [-0.55, 0.06]

Bayes Factor Analyses

IUS

Post

full_lmer_IUSbp <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_BP_long, REML = TRUE)
null_lmer_IUSbp <- update(full_lmer_IUSbp, formula = ~ . -Time:Group) # null means no interaction effect
BF_BIC_IUSbp <- exp((BIC(null_lmer_IUSbp) - BIC(full_lmer_IUSbp))/2)
BF_BIC_IUSbp # for the interaction
## [1] 2612.411
M2_lmer_IUSbp <- lmer(IUS_Score ~ Time + Group + (1|ID), data = IUS_BP_long, REML = TRUE)
null_lmer_IUSbp <- update(M2_lmer_IUSbp, formula = ~ . -Group) # null means no group effect
BF_BIC_IUSbp <- exp((BIC(null_lmer_IUSbp) - BIC(M2_lmer_IUSbp))/2)
BF_BIC_IUSbp # for group
## [1] 0.02741644
M3_lmer_IUSbp <- lmer(IUS_Score ~ Time + Group + (1|ID), data = IUS_BP_long, REML = TRUE)
null_lmer_IUSbp <- update(M3_lmer_IUSbp, formula = ~ . -Time) # null means no time effect
BF_BIC_IUSbp <- exp((BIC(null_lmer_IUSbp) - BIC(M3_lmer_IUSbp))/2)
BF_BIC_IUSbp # for the time
## [1] 2.401982e+14

Time effect by group

IUS_BP_long_I <- IUS_BP %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_BP_long_C <- IUS_BP %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_BP_long_EC <- IUS_BP %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

full_lmer_IUSbp_I <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_BP_long_I, REML = TRUE)
null_lmer_IUSbp_I <- update(full_lmer_IUSbp_I, formula = ~ . -Time)
BF_BIC_IUSbp_I <- exp((BIC(null_lmer_IUSbp_I) - BIC(full_lmer_IUSbp_I))/2)
BF_BIC_IUSbp_I
## [1] 2825592191
M2_lmer_IUSbp_C <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_BP_long_C, REML = TRUE)
null_lmer_IUSbp_C <- update(M2_lmer_IUSbp_C, formula = ~ . -Time)
BF_BIC_IUSbp_C <- exp((BIC(null_lmer_IUSbp_C) - BIC(M2_lmer_IUSbp_C))/2)
BF_BIC_IUSbp_C
## [1] 3029998
M3_lmer_IUSbp_EC <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_BP_long_EC, REML = TRUE)
null_lmer_IUSbp_EC <- update(M3_lmer_IUSbp_EC, formula = ~ . -Time)
BF_BIC_IUSbp_EC <- exp((BIC(null_lmer_IUSbp_EC) - BIC(M3_lmer_IUSbp_EC))/2)
BF_BIC_IUSbp_EC
## [1] 0.2040359

1 Week

full_lmer_IUSb1w <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1W_long, REML = TRUE)
null_lmer_IUSb1w <- update(full_lmer_IUSb1w, formula = ~ . -Time:Group)
BF_BIC_IUSb1w <- exp((BIC(null_lmer_IUSb1w) - BIC(full_lmer_IUSb1w))/2)
BF_BIC_IUSb1w
## [1] 241.0079
M2_lmer_IUSb1w <- lmer(IUS_Score ~ Time + Group + (1|ID), data = IUS_B1W_long, REML = TRUE)
null_lmer_IUSb1w <- update(M2_lmer_IUSb1w, formula = ~ . -Group)
BF_BIC_IUSb1w <- exp((BIC(null_lmer_IUSb1w) - BIC(M2_lmer_IUSb1w))/2)
BF_BIC_IUSb1w
## [1] 0.02231583
M3_lmer_IUSb1w <- lmer(IUS_Score ~ Time + Group + (1|ID), data = IUS_B1W_long, REML = TRUE)
null_lmer_IUSb1w <- update(M3_lmer_IUSb1w, formula = ~ . -Time)
BF_BIC_IUSb1w <- exp((BIC(null_lmer_IUSb1w) - BIC(M3_lmer_IUSb1w))/2)
BF_BIC_IUSb1w
## [1] 19872.83

Time effect by group

IUS_B1w_long_I <- IUS_B1W %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_B1w_long_C <- IUS_B1W %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_B1w_long_EC <- IUS_B1W %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

full_lmer_IUSb1w_I <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_B1w_long_I, REML = TRUE)
null_lmer_IUSb1w_I <- update(full_lmer_IUSb1w_I, formula = ~ . -Time)
BF_BIC_IUSb1w_I <- exp((BIC(null_lmer_IUSb1w_I) - BIC(full_lmer_IUSb1w_I))/2)
BF_BIC_IUSb1w_I
## [1] 151951.7
M2_lmer_IUSb1w_C <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_B1w_long_C, REML = TRUE)
null_lmer_IUSb1w_C <- update(M2_lmer_IUSb1w_C, formula = ~ . -Time)
BF_BIC_IUSb1w_C <- exp((BIC(null_lmer_IUSb1w_C) - BIC(M2_lmer_IUSb1w_C))/2)
BF_BIC_IUSb1w_C
## [1] 4.847665
M3_lmer_IUSb1w_EC <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_B1w_long_EC, REML = TRUE)
null_lmer_IUSb1w_EC <- update(M3_lmer_IUSb1w_EC, formula = ~ . -Time)
BF_BIC_IUSb1w_EC <- exp((BIC(null_lmer_IUSb1w_EC) - BIC(M3_lmer_IUSb1w_EC))/2)
BF_BIC_IUSb1w_EC
## [1] 0.395221

1 Month

full_lmer_IUSb1m <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1M_long, REML = TRUE)
null_lmer_IUSb1m <- update(full_lmer_IUSb1m, formula = ~ . -Time:Group)
BF_BIC_IUSb1m <- exp((BIC(null_lmer_IUSb1m) - BIC(full_lmer_IUSb1m))/2)
BF_BIC_IUSb1m
## [1] 2671.184
M2_lmer_IUSb1m <- lmer(IUS_Score ~ Time + Group + (1|ID), data = IUS_B1M_long, REML = TRUE)
null_lmer_IUSb1m <- update(M2_lmer_IUSb1m, formula = ~ . -Group)
BF_BIC_IUSb1m <- exp((BIC(null_lmer_IUSb1m) - BIC(M2_lmer_IUSb1m))/2)
BF_BIC_IUSb1m
## [1] 0.02837185
M3_lmer_IUSb1m <- lmer(IUS_Score ~ Time + Group + (1|ID), data = IUS_B1M_long, REML = TRUE)
null_lmer_IUSb1m <- update(M3_lmer_IUSb1m, formula = ~ . -Time)
BF_BIC_IUSb1m <- exp((BIC(null_lmer_IUSb1m) - BIC(M3_lmer_IUSb1m))/2)
BF_BIC_IUSb1m
## [1] 197.3966

Time effect by group

IUS_B1m_long_I <- IUS_B1M %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_B1m_long_C <- IUS_B1M %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_B1m_long_EC <- IUS_B1M %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

full_lmer_IUSb1m_I <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_B1m_long_I, REML = TRUE)
null_lmer_IUSb1m_I <- update(full_lmer_IUSb1m_I, formula = ~ . -Time)
BF_BIC_IUSb1m_I <- exp((BIC(null_lmer_IUSb1m_I) - BIC(full_lmer_IUSb1m_I))/2)
BF_BIC_IUSb1m_I
## [1] 94753.09
M2_lmer_IUSb1m_C <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_B1m_long_C, REML = TRUE)
null_lmer_IUSb1m_C <- update(M2_lmer_IUSb1m_C, formula = ~ . -Time)
BF_BIC_IUSb1m_C <- exp((BIC(null_lmer_IUSb1m_C) - BIC(M2_lmer_IUSb1m_C))/2)
BF_BIC_IUSb1m_C
## [1] 1.316734
M3_lmer_IUSb1m_EC <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_B1m_long_EC, REML = TRUE)
null_lmer_IUSb1m_EC <- update(M3_lmer_IUSb1m_EC, formula = ~ . -Time)
BF_BIC_IUSb1m_EC <- exp((BIC(null_lmer_IUSb1m_EC) - BIC(M3_lmer_IUSb1m_EC))/2)
BF_BIC_IUSb1m_EC
## [1] 8.081472

Intervention vs Psychoeducation

# Interaction - BP
full_lmer_IUSbp_IC <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_BP_long_IC, REML = TRUE)
null_lmer_IUSbp_IC <- update(full_lmer_IUSbp_IC, formula = ~ . -Time:Group)
BF_BIC_IUSbp_IC <- exp((BIC(null_lmer_IUSbp_IC) - BIC(full_lmer_IUSbp_IC))/2)
BF_BIC_IUSbp_IC
## [1] 2.279354
# Interaction - 1W
IUS_B1w_long_IC <- IUS_B1W %>%
  filter(Group != "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

full_lmer_IUSb1w_IC <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1w_long_IC, REML = TRUE)
null_lmer_IUSb1w_IC <- update(full_lmer_IUSb1w_IC, formula = ~ . -Time:Group)
BF_BIC_IUSb1w_IC <- exp((BIC(null_lmer_IUSb1w_IC) - BIC(full_lmer_IUSb1w_IC))/2)
BF_BIC_IUSb1w_IC
## [1] 3.039647
# Interaction - 1M
IUS_B1m_long_IC <- IUS_B1M %>%
  filter(Group != "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

full_lmer_IUSb1m_IC <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1m_long_IC, REML = TRUE)
null_lmer_IUSb1m_IC <- update(full_lmer_IUSb1m_IC, formula = ~ . -Time:Group)
BF_BIC_IUSb1m_IC <- exp((BIC(null_lmer_IUSb1m_IC) - BIC(full_lmer_IUSb1m_IC))/2)
BF_BIC_IUSb1m_IC
## [1] 3.135853

BT

Post - excluding never samplers

ns_BP_long <- BT_PRE_POST %>%
  filter(A_PRE_samples != "0") %>% 
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")
full_lmer_nsbp <- lmer(BT_Score ~ Group * Time + (1|ID), data = ns_BP_long, REML = TRUE)
null_lmer_nsbp <- update(full_lmer_nsbp, formula = ~ . -Time:Group) # null means no interaction effect
BF_BIC_nsbp <- exp((BIC(null_lmer_nsbp) - BIC(full_lmer_nsbp))/2)
BF_BIC_nsbp # for the interaction
## [1] 4.999097
M2_lmer_nsbp <- lmer(BT_Score ~ Time + Group + (1|ID), data = ns_BP_long, REML = TRUE)
null_lmer_nsbp <- update(M2_lmer_nsbp, formula = ~ . -Group) # null means no group effect
BF_BIC_nsbp <- exp((BIC(null_lmer_nsbp) - BIC(M2_lmer_nsbp))/2)
BF_BIC_nsbp # for group
## [1] 0.8390539
M3_lmer_nsbp <- lmer(BT_Score ~ Time + Group + (1|ID), data = ns_BP_long, REML = TRUE)
null_lmer_nsbp <- update(M3_lmer_nsbp, formula = ~ . -Time) # null means no time effect
BF_BIC_nsbp <- exp((BIC(null_lmer_nsbp) - BIC(M3_lmer_nsbp))/2)
BF_BIC_nsbp # for the time
## [1] 50.11713

Time effect by group

ns_BP_long_it <- ns_BP_long %>%
  filter(Group == "C_Intervention")
ns_BP_long_ct <- ns_BP_long %>%
  filter(Group == "B_Controls")
ns_BP_long_ect <- ns_BP_long %>%
  filter(Group == "A_ECs")

full_lmer_nsbp_It <- lmer(BT_Score ~ Time + (1|ID), data = ns_BP_long_it, REML = TRUE)
null_lmer_nsbp_It <- update(full_lmer_nsbp_It, formula = ~ . -Time)
BF_BIC_nsbp_It <- exp((BIC(null_lmer_nsbp_It) - BIC(full_lmer_nsbp_It))/2)
BF_BIC_nsbp_It # intervention
## [1] 5.710564
M2_lmer_nsbp_Ct <- lmer(BT_Score ~ Time + (1|ID), data = ns_BP_long_ct, REML = TRUE)
null_lmer_nsbp_Ct <- update(M2_lmer_nsbp_Ct, formula = ~ . -Time)
BF_BIC_nsbp_Ct <- exp((BIC(null_lmer_nsbp_Ct) - BIC(M2_lmer_nsbp_Ct))/2)
BF_BIC_nsbp_Ct # psychoed
## [1] 21.76864
M3_lmer_nsbp_ECt <- lmer(BT_Score ~ Time + (1|ID), data = ns_BP_long_ect, REML = TRUE)
null_lmer_nsbp_ECt <- update(M3_lmer_nsbp_ECt, formula = ~ . -Time)
BF_BIC_nsbp_ECt <- exp((BIC(null_lmer_nsbp_ECt) - BIC(M3_lmer_nsbp_ECt))/2)
BF_BIC_nsbp_ECt # ecs
## [1] 0.5438938

Intervention vs Psychoeducation

ns_BP_long_IP <- ns_BP_long %>%
  filter(Group != "A_ECs")

M3_lmer_nsbp_EC <- lmer(BT_Score ~ Group * Time + (1|ID), data = ns_BP_long_IP, REML = TRUE)
null_lmer_nsbp_EC <- update(M3_lmer_nsbp_EC, formula = ~ . -Time:Group)
BF_BIC_nsbp_EC <- exp((BIC(null_lmer_nsbp_EC) - BIC(M3_lmer_nsbp_EC))/2)
BF_BIC_nsbp_EC # psychoed vs intervention
## [1] 2.420322

Post - including never samplers

full_lmer_BTbp <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long, REML = TRUE)
null_lmer_BTbp <- update(full_lmer_BTbp, formula = ~ . -Time:Group) # null means no interaction effect
BF_BIC_BTbp <- exp((BIC(null_lmer_BTbp) - BIC(full_lmer_BTbp))/2)
BF_BIC_BTbp # for the interaction
## [1] 1.086503
M2_lmer_BTbp <- lmer(BT_Score ~ Time + Group + (1|ID), data = BT_BP_long, REML = TRUE)
null_lmer_BTbp <- update(M2_lmer_BTbp, formula = ~ . -Group) # null means no group effect
BF_BIC_BTbp <- exp((BIC(null_lmer_BTbp) - BIC(M2_lmer_BTbp))/2)
BF_BIC_BTbp # for group
## [1] 0.2687153
M3_lmer_BTbp <- lmer(BT_Score ~ Time + Group + (1|ID), data = BT_BP_long, REML = TRUE)
null_lmer_BTbp <- update(M3_lmer_BTbp, formula = ~ . -Time) # null means no time effect
BF_BIC_BTbp <- exp((BIC(null_lmer_BTbp) - BIC(M3_lmer_BTbp))/2)
BF_BIC_BTbp # for the time
## [1] 14.95944

Time effect by group

BT_BP_long_it <- BT_BP_long %>%
  filter(Group == "C_Intervention")
BT_BP_long_ct <- BT_BP_long %>%
  filter(Group == "B_Controls")
BT_BP_long_ect <- BT_BP_long %>%
  filter(Group == "A_ECs")

full_lmer_BTbp_It <- lmer(BT_Score ~ Time + (1|ID), data = BT_BP_long_it, REML = TRUE)
null_lmer_BTbp_It <- update(full_lmer_BTbp_It, formula = ~ . -Time)
BF_BIC_BTbp_It <- exp((BIC(null_lmer_BTbp_It) - BIC(full_lmer_BTbp_It))/2)
BF_BIC_BTbp_It # intervention
## [1] 2.348086
M2_lmer_BTbp_Ct <- lmer(BT_Score ~ Time + (1|ID), data = BT_BP_long_ct, REML = TRUE)
null_lmer_BTbp_Ct <- update(M2_lmer_BTbp_Ct, formula = ~ . -Time)
BF_BIC_BTbp_Ct <- exp((BIC(null_lmer_BTbp_Ct) - BIC(M2_lmer_BTbp_Ct))/2)
BF_BIC_BTbp_Ct # psychoed
## [1] 8.816568
M3_lmer_BTbp_ECt <- lmer(BT_Score ~ Time + (1|ID), data = BT_BP_long_ect, REML = TRUE)
null_lmer_BTbp_ECt <- update(M3_lmer_BTbp_ECt, formula = ~ . -Time)
BF_BIC_BTbp_ECt <- exp((BIC(null_lmer_BTbp_ECt) - BIC(M3_lmer_BTbp_ECt))/2)
BF_BIC_BTbp_ECt # ecs
## [1] 0.2522305

Intervention vs Psychoeducation

BT_BP_long_IP <- BT_BP_long %>%
  filter(Group != "A_ECs")

M3_lmer_BTbp_EC <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long_IP, REML = TRUE)
null_lmer_BTbp_EC <- update(M3_lmer_BTbp_EC, formula = ~ . -Time:Group)
BF_BIC_BTbp_EC <- exp((BIC(null_lmer_BTbp_EC) - BIC(M3_lmer_BTbp_EC))/2)
BF_BIC_BTbp_EC # psychoed vs intervention
## [1] 1.101577

GM

Post

full_lmer_GMbp <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_BP_long, REML = TRUE)
null_lmer_GMbp <- update(full_lmer_GMbp, formula = ~ . -Time:Group) # null means no interaction effect
BF_BIC_GMbp <- exp((BIC(null_lmer_GMbp) - BIC(full_lmer_GMbp))/2)
BF_BIC_GMbp # for the interaction
## [1] 0.3769363
M2_lmer_GMbp <- lmer(GM_Score ~ Time + Group + (1|ID), data = GM_BP_long, REML = TRUE)
null_lmer_GMbp <- update(M2_lmer_GMbp, formula = ~ . -Group) # null means no group effect
BF_BIC_GMbp <- exp((BIC(null_lmer_GMbp) - BIC(M2_lmer_GMbp))/2)
BF_BIC_GMbp # for group
## [1] 0.002426745
M3_lmer_GMbp <- lmer(GM_Score ~ Time + Group + (1|ID), data = GM_BP_long, REML = TRUE)
null_lmer_GMbp <- update(M3_lmer_GMbp, formula = ~ . -Time) # null means no time effect
BF_BIC_GMbp <- exp((BIC(null_lmer_GMbp) - BIC(M3_lmer_GMbp))/2)
BF_BIC_GMbp # for the time
## [1] 3566215

Time effect by group

GM_BP_long_I <- GM_BP %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_BP_long_C <- GM_BP %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_BP_long_EC <- GM_BP %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")

full_lmer_GMbp_I <- lmer(GM_Score ~ Time + (1|ID), data = GM_BP_long_I, REML = TRUE)
null_lmer_GMbp_I <- update(full_lmer_GMbp_I, formula = ~ . -Time)
BF_BIC_GMbp_I <- exp((BIC(null_lmer_GMbp_I) - BIC(full_lmer_GMbp_I))/2)
BF_BIC_GMbp_I # intervention
## [1] 15556.71
M2_lmer_GMbp_C <- lmer(GM_Score ~ Time + (1|ID), data = GM_BP_long_C, REML = TRUE)
null_lmer_GMbp_C <- update(M2_lmer_GMbp_C, formula = ~ . -Time)
BF_BIC_GMbp_C <- exp((BIC(null_lmer_GMbp_C) - BIC(M2_lmer_GMbp_C))/2)
BF_BIC_GMbp_C # psychoed
## [1] 470.2298
M3_lmer_GMbp_EC <- lmer(GM_Score ~ Time + (1|ID), data = GM_BP_long_EC, REML = TRUE)
null_lmer_GMbp_EC <- update(M3_lmer_GMbp_EC, formula = ~ . -Time)
BF_BIC_GMbp_EC <- exp((BIC(null_lmer_GMbp_EC) - BIC(M3_lmer_GMbp_EC))/2)
BF_BIC_GMbp_EC # ecs
## [1] 0.03192482

Intervention vs Psychoeducation vs ECs

GM_BP_long_IC <- GM_BP %>%
  filter(Group != "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")
full_lmer_GMbp_IC <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_BP_long_IC, REML = TRUE)
null_lmer_GMbp_IC <- update(full_lmer_GMbp_IC, formula = ~ . -Time:Group)
BF_BIC_GMbp_IC <- exp((BIC(null_lmer_GMbp_IC) - BIC(full_lmer_GMbp_IC))/2)
BF_BIC_GMbp_IC #intervention vs psychoed
## [1] 0.04062739
GM_BP_long_IE <- GM_BP %>%
  filter(Group != "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")
full_lmer_GMbp_IE <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_BP_long_IE, REML = TRUE)
null_lmer_GMbp_IE <- update(full_lmer_GMbp_IE, formula = ~ . -Time:Group)
BF_BIC_GMbp_IE <- exp((BIC(null_lmer_GMbp_IE) - BIC(full_lmer_GMbp_IE))/2)
BF_BIC_GMbp_IE #intervention vs ecs
## [1] 20.21094
GM_BP_long_PE <- GM_BP %>%
  filter(Group != "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")
full_lmer_GMbp_PE <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_BP_long_PE, REML = TRUE)
null_lmer_GMbp_PE <- update(full_lmer_GMbp_PE, formula = ~ . -Time:Group)
BF_BIC_GMbp_PE <- exp((BIC(null_lmer_GMbp_PE) - BIC(full_lmer_GMbp_PE))/2)
BF_BIC_GMbp_PE #psychoed vs ecs
## [1] 2.435914

1 Week

full_lmer_GMb1w <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_B1W_long, REML = TRUE)
null_lmer_GMb1w <- update(full_lmer_GMb1w, formula = ~ . -Time:Group)
BF_BIC_GMb1w <- exp((BIC(null_lmer_GMb1w) - BIC(full_lmer_GMb1w))/2)
BF_BIC_GMb1w
## [1] 0.005563526
M2_lmer_GMb1w <- lmer(GM_Score ~ Time + Group + (1|ID), data = GM_B1W_long, REML = TRUE)
null_lmer_GMb1w <- update(M2_lmer_GMb1w, formula = ~ . -Group)
BF_BIC_GMb1w <- exp((BIC(null_lmer_GMb1w) - BIC(M2_lmer_GMb1w))/2)
BF_BIC_GMb1w
## [1] 0.004970869
M3_lmer_GMb1w <- lmer(GM_Score ~ Time + Group + (1|ID), data = GM_B1W_long, REML = TRUE)
null_lmer_GMb1w <- update(M3_lmer_GMb1w, formula = ~ . -Time)
BF_BIC_GMb1w <- exp((BIC(null_lmer_GMb1w) - BIC(M3_lmer_GMb1w))/2)
BF_BIC_GMb1w
## [1] 58.41477

Time effect by group

GM_B1w_long_I <- GM_B1W %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_GM, C_W1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_B1w_long_C <- GM_B1W %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_GM, C_W1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_B1w_long_EC <- GM_B1W %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_GM, C_W1_GM),
               names_to = "Time",
               values_to = "GM_Score")

full_lmer_GMb1w_I <- lmer(GM_Score ~ Time + (1|ID), data = GM_B1w_long_I, REML = TRUE)
null_lmer_GMb1w_I <- update(full_lmer_GMb1w_I, formula = ~ . -Time)
BF_BIC_GMb1w_I <- exp((BIC(null_lmer_GMb1w_I) - BIC(full_lmer_GMb1w_I))/2)
BF_BIC_GMb1w_I
## [1] 199.4642
M2_lmer_GMb1w_C <- lmer(GM_Score ~ Time + (1|ID), data = GM_B1w_long_C, REML = TRUE)
null_lmer_GMb1w_C <- update(M2_lmer_GMb1w_C, formula = ~ . -Time)
BF_BIC_GMb1w_C <- exp((BIC(null_lmer_GMb1w_C) - BIC(M2_lmer_GMb1w_C))/2)
BF_BIC_GMb1w_C
## [1] 0.3694616
M3_lmer_GMb1w_EC <- lmer(GM_Score ~ Time + (1|ID), data = GM_B1w_long_EC, REML = TRUE)
null_lmer_GMb1w_EC <- update(M3_lmer_GMb1w_EC, formula = ~ . -Time)
BF_BIC_GMb1w_EC <- exp((BIC(null_lmer_GMb1w_EC) - BIC(M3_lmer_GMb1w_EC))/2)
BF_BIC_GMb1w_EC
## [1] 0.06464413

1 Month

full_lmer_GMb1m <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_B1M_long, REML = TRUE)
null_lmer_GMb1m <- update(full_lmer_GMb1m, formula = ~ . -Time:Group)
BF_BIC_GMb1m <- exp((BIC(null_lmer_GMb1m) - BIC(full_lmer_GMb1m))/2)
BF_BIC_GMb1m
## [1] 0.01232158
M2_lmer_GMb1m <- lmer(GM_Score ~ Time + Group + (1|ID), data = GM_B1M_long, REML = TRUE)
null_lmer_GMb1m <- update(M2_lmer_GMb1m, formula = ~ . -Group)
BF_BIC_GMb1m <- exp((BIC(null_lmer_GMb1m) - BIC(M2_lmer_GMb1m))/2)
BF_BIC_GMb1m
## [1] 0.004456573
M3_lmer_GMb1m <- lmer(GM_Score ~ Time + Group + (1|ID), data = GM_B1M_long, REML = TRUE)
null_lmer_GMb1m <- update(M3_lmer_GMb1m, formula = ~ . -Time)
BF_BIC_GMb1m <- exp((BIC(null_lmer_GMb1m) - BIC(M3_lmer_GMb1m))/2)
BF_BIC_GMb1m
## [1] 216.1675

Time effect by group

GM_B1m_long_I <- GM_B1M %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_B1m_long_C <- GM_B1M %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_B1m_long_EC <- GM_B1M %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")

full_lmer_GMb1m_I <- lmer(GM_Score ~ Time + (1|ID), data = GM_B1m_long_I, REML = TRUE)
null_lmer_GMb1m_I <- update(full_lmer_GMb1m_I, formula = ~ . -Time)
BF_BIC_GMb1m_I <- exp((BIC(null_lmer_GMb1m_I) - BIC(full_lmer_GMb1m_I))/2)
BF_BIC_GMb1m_I
## [1] 331.0491
M2_lmer_GMb1m_C <- lmer(GM_Score ~ Time + (1|ID), data = GM_B1m_long_C, REML = TRUE)
null_lmer_GMb1m_C <- update(M2_lmer_GMb1m_C, formula = ~ . -Time)
BF_BIC_GMb1m_C <- exp((BIC(null_lmer_GMb1m_C) - BIC(M2_lmer_GMb1m_C))/2)
BF_BIC_GMb1m_C
## [1] 0.6108577
M3_lmer_GMb1m_EC <- lmer(GM_Score ~ Time + (1|ID), data = GM_B1m_long_EC, REML = TRUE)
null_lmer_GMb1m_EC <- update(M3_lmer_GMb1m_EC, formula = ~ . -Time)
BF_BIC_GMb1m_EC <- exp((BIC(null_lmer_GMb1m_EC) - BIC(M3_lmer_GMb1m_EC))/2)
BF_BIC_GMb1m_EC
## [1] 0.05271971

PHQ

1 Week

full_lmer_PHQb1w <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1W_long, REML = TRUE)
null_lmer_PHQb1w <- update(full_lmer_PHQb1w, formula = ~ . -Time:Group)
BF_BIC_PHQb1w <- exp((BIC(null_lmer_PHQb1w) - BIC(full_lmer_PHQb1w))/2)
BF_BIC_PHQb1w
## [1] 0.02531879
M2_lmer_PHQb1w <- lmer(PHQ_Score ~ Time + Group + (1|ID), data = PHQ_B1W_long, REML = TRUE)
null_lmer_PHQb1w <- update(M2_lmer_PHQb1w, formula = ~ . -Group)
BF_BIC_PHQb1w <- exp((BIC(null_lmer_PHQb1w) - BIC(M2_lmer_PHQb1w))/2)
BF_BIC_PHQb1w
## [1] 0.02038741
M3_lmer_PHQb1w <- lmer(PHQ_Score ~ Time + Group + (1|ID), data = PHQ_B1W_long, REML = TRUE)
null_lmer_PHQb1w <- update(M3_lmer_PHQb1w, formula = ~ . -Time)
BF_BIC_PHQb1w <- exp((BIC(null_lmer_PHQb1w) - BIC(M3_lmer_PHQb1w))/2)
BF_BIC_PHQb1w
## [1] 9.848049

Time effect by group

PHQ_B1w_long_I <- PHQ_B1W %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_B1w_long_C <- PHQ_B1W %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_B1w_long_EC <- PHQ_B1W %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")

full_lmer_PHQb1w_I <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_B1w_long_I, REML = TRUE)
null_lmer_PHQb1w_I <- update(full_lmer_PHQb1w_I, formula = ~ . -Time)
BF_BIC_PHQb1w_I <- exp((BIC(null_lmer_PHQb1w_I) - BIC(full_lmer_PHQb1w_I))/2)
BF_BIC_PHQb1w_I
## [1] 6.213481
M2_lmer_PHQb1w_C <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_B1w_long_C, REML = TRUE)
null_lmer_PHQb1w_C <- update(M2_lmer_PHQb1w_C, formula = ~ . -Time)
BF_BIC_PHQb1w_C <- exp((BIC(null_lmer_PHQb1w_C) - BIC(M2_lmer_PHQb1w_C))/2)
BF_BIC_PHQb1w_C
## [1] 0.6586489
M3_lmer_PHQb1w_EC <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_B1w_long_EC, REML = TRUE)
null_lmer_PHQb1w_EC <- update(M3_lmer_PHQb1w_EC, formula = ~ . -Time)
BF_BIC_PHQb1w_EC <- exp((BIC(null_lmer_PHQb1w_EC) - BIC(M3_lmer_PHQb1w_EC))/2)
BF_BIC_PHQb1w_EC
## [1] 0.1382616

1 Month

full_lmer_PHQb1m <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1M_long, REML = TRUE)
null_lmer_PHQb1m <- update(full_lmer_PHQb1m, formula = ~ . -Time:Group)
BF_BIC_PHQb1m <- exp((BIC(null_lmer_PHQb1m) - BIC(full_lmer_PHQb1m))/2)
BF_BIC_PHQb1m
## [1] 0.7440856
M2_lmer_PHQb1m <- lmer(PHQ_Score ~ Time + Group + (1|ID), data = PHQ_B1M_long, REML = TRUE)
null_lmer_PHQb1m <- update(M2_lmer_PHQb1m, formula = ~ . -Group)
BF_BIC_PHQb1m <- exp((BIC(null_lmer_PHQb1m) - BIC(M2_lmer_PHQb1m))/2)
BF_BIC_PHQb1m
## [1] 0.02448161
M3_lmer_PHQb1m <- lmer(PHQ_Score ~ Time + Group + (1|ID), data = PHQ_B1M_long, REML = TRUE)
null_lmer_PHQb1m <- update(M3_lmer_PHQb1m, formula = ~ . -Time)
BF_BIC_PHQb1m <- exp((BIC(null_lmer_PHQb1m) - BIC(M3_lmer_PHQb1m))/2)
BF_BIC_PHQb1m
## [1] 22.08378

Time effect by group

PHQ_B1m_long_I <- PHQ_B1M %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_B1m_long_C <- PHQ_B1M %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_B1m_long_EC <- PHQ_B1M %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")

full_lmer_PHQb1m_I <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_B1m_long_I, REML = TRUE)
null_lmer_PHQb1m_I <- update(full_lmer_PHQb1m_I, formula = ~ . -Time)
BF_BIC_PHQb1m_I <- exp((BIC(null_lmer_PHQb1m_I) - BIC(full_lmer_PHQb1m_I))/2)
BF_BIC_PHQb1m_I
## [1] 527.3174
M2_lmer_PHQb1m_C <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_B1m_long_C, REML = TRUE)
null_lmer_PHQb1m_C <- update(M2_lmer_PHQb1m_C, formula = ~ . -Time)
BF_BIC_PHQb1m_C <- exp((BIC(null_lmer_PHQb1m_C) - BIC(M2_lmer_PHQb1m_C))/2)
BF_BIC_PHQb1m_C
## [1] 0.6946523
M3_lmer_PHQb1m_EC <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_B1m_long_EC, REML = TRUE)
null_lmer_PHQb1m_EC <- update(M3_lmer_PHQb1m_EC, formula = ~ . -Time)
BF_BIC_PHQb1m_EC <- exp((BIC(null_lmer_PHQb1m_EC) - BIC(M3_lmer_PHQb1m_EC))/2)
BF_BIC_PHQb1m_EC
## [1] 0.2919433

Intervention vs Psychoeducation vs ECs

Intervention vs ECs

PHQ_B1M_IE <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "D_M1_PHQ_total") %>% 
  filter(Group != "B_Controls")
PHQ_B1M_long_IE <- PHQ_B1M_IE %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
full_lmer_PHQb1m <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1M_long_IE, REML = TRUE)
null_lmer_PHQb1m <- update(full_lmer_PHQb1m, formula = ~ . -Time:Group)
BF_BIC_PHQb1m <- exp((BIC(null_lmer_PHQb1m) - BIC(full_lmer_PHQb1m))/2)
BF_BIC_PHQb1m
## [1] 22.86168

Psychoed vs ECs

PHQ_B1M_PE <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "D_M1_PHQ_total") %>% 
  filter(Group != "C_Intervention")
PHQ_B1M_long_PE <- PHQ_B1M_PE %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
full_lmer_PHQb1m <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1M_long_PE, REML = TRUE)
null_lmer_PHQb1m <- update(full_lmer_PHQb1m, formula = ~ . -Time:Group)
BF_BIC_PHQb1m <- exp((BIC(null_lmer_PHQb1m) - BIC(full_lmer_PHQb1m))/2)
BF_BIC_PHQb1m
## [1] 0.6985068

Intervention vs Psychoed

PHQ_B1M_IP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "D_M1_PHQ_total") %>% 
  filter(Group != "A_ECs")
PHQ_B1M_long_IP <- PHQ_B1M_IP %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
full_lmer_PHQb1m <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1M_long_IP, REML = TRUE)
null_lmer_PHQb1m <- update(full_lmer_PHQb1m, formula = ~ . -Time:Group)
BF_BIC_PHQb1m <- exp((BIC(null_lmer_PHQb1m) - BIC(full_lmer_PHQb1m))/2)
BF_BIC_PHQb1m
## [1] 0.2772541

GAD

1 Week

full_lmer_GADb1w <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_B1W_long, REML = TRUE)
null_lmer_GADb1w <- update(full_lmer_GADb1w, formula = ~ . -Time:Group)
BF_BIC_GADb1w <- exp((BIC(null_lmer_GADb1w) - BIC(full_lmer_GADb1w))/2)
BF_BIC_GADb1w
## [1] 0.02352804
M2_lmer_GADb1w <- lmer(GAD_Score ~ Time + Group + (1|ID), data = GAD_B1W_long, REML = TRUE)
null_lmer_GADb1w <- update(M2_lmer_GADb1w, formula = ~ . -Group)
BF_BIC_GADb1w <- exp((BIC(null_lmer_GADb1w) - BIC(M2_lmer_GADb1w))/2)
BF_BIC_GADb1w
## [1] 0.01108104
M3_lmer_GADb1w <- lmer(GAD_Score ~ Time + Group + (1|ID), data = GAD_B1W_long, REML = TRUE)
null_lmer_GADb1w <- update(M3_lmer_GADb1w, formula = ~ . -Time)
BF_BIC_GADb1w <- exp((BIC(null_lmer_GADb1w) - BIC(M3_lmer_GADb1w))/2)
BF_BIC_GADb1w
## [1] 0.3252588

Time effect by group

GAD_B1w_long_I <- GAD_B1W %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_B1w_long_C <- GAD_B1W %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_B1w_long_EC <- GAD_B1W %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")

full_lmer_GADb1w_I <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_B1w_long_I, REML = TRUE)
null_lmer_GADb1w_I <- update(full_lmer_GADb1w_I, formula = ~ . -Time)
BF_BIC_GADb1w_I <- exp((BIC(null_lmer_GADb1w_I) - BIC(full_lmer_GADb1w_I))/2)
BF_BIC_GADb1w_I
## [1] 0.76916
M2_lmer_GADb1w_C <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_B1w_long_C, REML = TRUE)
null_lmer_GADb1w_C <- update(M2_lmer_GADb1w_C, formula = ~ . -Time)
BF_BIC_GADb1w_C <- exp((BIC(null_lmer_GADb1w_C) - BIC(M2_lmer_GADb1w_C))/2)
BF_BIC_GADb1w_C
## [1] 0.2132653
M3_lmer_GADb1w_EC <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_B1w_long_EC, REML = TRUE)
null_lmer_GADb1w_EC <- update(M3_lmer_GADb1w_EC, formula = ~ . -Time)
BF_BIC_GADb1w_EC <- exp((BIC(null_lmer_GADb1w_EC) - BIC(M3_lmer_GADb1w_EC))/2)
BF_BIC_GADb1w_EC
## [1] 0.1446356

1 Month

full_lmer_GADb1m <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_B1M_long, REML = TRUE)
null_lmer_GADb1m <- update(full_lmer_GADb1m, formula = ~ . -Time:Group)
BF_BIC_GADb1m <- exp((BIC(null_lmer_GADb1m) - BIC(full_lmer_GADb1m))/2)
BF_BIC_GADb1m
## [1] 1.697957
M2_lmer_GADb1m <- lmer(GAD_Score ~ Time + Group + (1|ID), data = GAD_B1M_long, REML = TRUE)
null_lmer_GADb1m <- update(M2_lmer_GADb1m, formula = ~ . -Group)
BF_BIC_GADb1m <- exp((BIC(null_lmer_GADb1m) - BIC(M2_lmer_GADb1m))/2)
BF_BIC_GADb1m
## [1] 0.009551524
M3_lmer_GADb1m <- lmer(GAD_Score ~ Time + Group + (1|ID), data = GAD_B1M_long, REML = TRUE)
null_lmer_GADb1m <- update(M3_lmer_GADb1m, formula = ~ . -Time)
BF_BIC_GADb1m <- exp((BIC(null_lmer_GADb1m) - BIC(M3_lmer_GADb1m))/2)
BF_BIC_GADb1m
## [1] 0.9999603

Time effect by group

GAD_B1m_long_I <- GAD_B1M %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_B1m_long_C <- GAD_B1M %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_B1m_long_EC <- GAD_B1M %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")

full_lmer_GADb1m_I <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_B1m_long_I, REML = TRUE)
null_lmer_GADb1m_I <- update(full_lmer_GADb1m_I, formula = ~ . -Time)
BF_BIC_GADb1m_I <- exp((BIC(null_lmer_GADb1m_I) - BIC(full_lmer_GADb1m_I))/2)
BF_BIC_GADb1m_I
## [1] 52.05475
M2_lmer_GADb1m_C <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_B1m_long_C, REML = TRUE)
null_lmer_GADb1m_C <- update(M2_lmer_GADb1m_C, formula = ~ . -Time)
BF_BIC_GADb1m_C <- exp((BIC(null_lmer_GADb1m_C) - BIC(M2_lmer_GADb1m_C))/2)
BF_BIC_GADb1m_C
## [1] 0.4528085
M3_lmer_GADb1m_EC <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_B1m_long_EC, REML = TRUE)
null_lmer_GADb1m_EC <- update(M3_lmer_GADb1m_EC, formula = ~ . -Time)
BF_BIC_GADb1m_EC <- exp((BIC(null_lmer_GADb1m_EC) - BIC(M3_lmer_GADb1m_EC))/2)
BF_BIC_GADb1m_EC
## [1] 0.7801084

FI

1 Week

full_lmer_FIb1w <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_B1W_long, REML = TRUE)
null_lmer_FIb1w <- update(full_lmer_FIb1w, formula = ~ . -Time:Group)
BF_BIC_FIb1w <- exp((BIC(null_lmer_FIb1w) - BIC(full_lmer_FIb1w))/2)
BF_BIC_FIb1w
## [1] 0.02112748
M2_lmer_FIb1w <- lmer(FI_Score ~ Time + Group + (1|ID), data = FI_B1W_long, REML = TRUE)
null_lmer_FIb1w <- update(M2_lmer_FIb1w, formula = ~ . -Group)
BF_BIC_FIb1w <- exp((BIC(null_lmer_FIb1w) - BIC(M2_lmer_FIb1w))/2)
BF_BIC_FIb1w
## [1] 0.003390009
M3_lmer_FIb1w <- lmer(FI_Score ~ Time + Group + (1|ID), data = FI_B1W_long, REML = TRUE)
null_lmer_FIb1w <- update(M3_lmer_FIb1w, formula = ~ . -Time)
BF_BIC_FIb1w <- exp((BIC(null_lmer_FIb1w) - BIC(M3_lmer_FIb1w))/2)
BF_BIC_FIb1w
## [1] 0.1681013

Time effect by group

FI_B1w_long_I <- FI_B1W %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_B1w_long_C <- FI_B1W %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_B1w_long_EC <- FI_B1W %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")

full_lmer_FIb1w_I <- lmer(FI_Score ~ Time + (1|ID), data = FI_B1w_long_I, REML = TRUE)
null_lmer_FIb1w_I <- update(full_lmer_FIb1w_I, formula = ~ . -Time)
BF_BIC_FIb1w_I <- exp((BIC(null_lmer_FIb1w_I) - BIC(full_lmer_FIb1w_I))/2)
BF_BIC_FIb1w_I
## [1] 1.596137
M2_lmer_FIb1w_C <- lmer(FI_Score ~ Time + (1|ID), data = FI_B1w_long_C, REML = TRUE)
null_lmer_FIb1w_C <- update(M2_lmer_FIb1w_C, formula = ~ . -Time)
BF_BIC_FIb1w_C <- exp((BIC(null_lmer_FIb1w_C) - BIC(M2_lmer_FIb1w_C))/2)
BF_BIC_FIb1w_C
## [1] 0.07294422
M3_lmer_FIb1w_EC <- lmer(FI_Score ~ Time + (1|ID), data = FI_B1w_long_EC, REML = TRUE)
null_lmer_FIb1w_EC <- update(M3_lmer_FIb1w_EC, formula = ~ . -Time)
BF_BIC_FIb1w_EC <- exp((BIC(null_lmer_FIb1w_EC) - BIC(M3_lmer_FIb1w_EC))/2)
BF_BIC_FIb1w_EC
## [1] 0.1252424

1 Month

full_lmer_FIb1m <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_B1M_long, REML = TRUE)
null_lmer_FIb1m <- update(full_lmer_FIb1m, formula = ~ . -Time:Group)
BF_BIC_FIb1m <- exp((BIC(null_lmer_FIb1m) - BIC(full_lmer_FIb1m))/2)
BF_BIC_FIb1m
## [1] 0.01319748
M2_lmer_FIb1m <- lmer(FI_Score ~ Time + Group + (1|ID), data = FI_B1M_long, REML = TRUE)
null_lmer_FIb1m <- update(M2_lmer_FIb1m, formula = ~ . -Group)
BF_BIC_FIb1m <- exp((BIC(null_lmer_FIb1m) - BIC(M2_lmer_FIb1m))/2)
BF_BIC_FIb1m
## [1] 0.004394219
M3_lmer_FIb1m <- lmer(FI_Score ~ Time + Group + (1|ID), data = FI_B1M_long, REML = TRUE)
null_lmer_FIb1m <- update(M3_lmer_FIb1m, formula = ~ . -Time)
BF_BIC_FIb1m <- exp((BIC(null_lmer_FIb1m) - BIC(M3_lmer_FIb1m))/2)
BF_BIC_FIb1m
## [1] 7.371853

Time effect by group

FI_B1m_long_I <- FI_B1M %>%
  filter(Group == "C_Intervention") %>% 
  pivot_longer(cols = c(A_PRE_FI_total, D_M1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_B1m_long_C <- FI_B1M %>%
  filter(Group == "B_Controls") %>% 
  pivot_longer(cols = c(A_PRE_FI_total, D_M1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_B1m_long_EC <- FI_B1M %>%
  filter(Group == "A_ECs") %>% 
  pivot_longer(cols = c(A_PRE_FI_total, D_M1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")

full_lmer_FIb1m_I <- lmer(FI_Score ~ Time + (1|ID), data = FI_B1m_long_I, REML = TRUE)
null_lmer_FIb1m_I <- update(full_lmer_FIb1m_I, formula = ~ . -Time)
BF_BIC_FIb1m_I <- exp((BIC(null_lmer_FIb1m_I) - BIC(full_lmer_FIb1m_I))/2)
BF_BIC_FIb1m_I
## [1] 2.89944
M2_lmer_FIb1m_C <- lmer(FI_Score ~ Time + (1|ID), data = FI_B1m_long_C, REML = TRUE)
null_lmer_FIb1m_C <- update(M2_lmer_FIb1m_C, formula = ~ . -Time)
BF_BIC_FIb1m_C <- exp((BIC(null_lmer_FIb1m_C) - BIC(M2_lmer_FIb1m_C))/2)
BF_BIC_FIb1m_C
## [1] 0.8673062
M3_lmer_FIb1m_EC <- lmer(FI_Score ~ Time + (1|ID), data = FI_B1m_long_EC, REML = TRUE)
null_lmer_FIb1m_EC <- update(M3_lmer_FIb1m_EC, formula = ~ . -Time)
BF_BIC_FIb1m_EC <- exp((BIC(null_lmer_FIb1m_EC) - BIC(M3_lmer_FIb1m_EC))/2)
BF_BIC_FIb1m_EC
## [1] 0.1167154