library(readr)
data <- read_csv("fifty_ten_2000_20_df.csv")
# Making statefp character for easy merging
data$STATEFP<-as.character(data$STATEFP)
state_and_data <- states(2021) %>%
filter(!STATEFP %in% c("02", "11", "15", "60", "66", "69", "72", "78")) %>% # Removed Alaska(02), Hawai(11), DC(15)
#filter(!STATEFP %in% c("02", "15", "60", "66", "69", "72", "78")) %>%
shift_geometry() %>%
left_join(data, by="STATEFP") %>% # join by statefp
select("STATEFP", "stname", "year_2000", "year_2020", "geometry", "stusps") #select only needed variabe
## Retrieving data for the year 2021
##
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============== | 19%
|
|=============== | 21%
|
|================ | 23%
|
|================= | 25%
|
|================== | 25%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================= | 34%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================ | 41%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|============================== | 44%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 46%
|
|================================= | 46%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|====================================== | 54%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|=============================================================== | 91%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|======================================================================| 100%
## Warning: None of your features are in Alaska, Hawaii, or Puerto Rico, so no geometries will be shifted.
## Transforming your object's CRS to 'ESRI:102003'
gc()
## used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
## Ncells 5014049 267.8 8389494 448.1 NA 8389494 448.1
## Vcells 9317204 71.1 17824054 136.0 16384 17754580 135.5
tmap_mode("plot")
## tmap mode set to plotting
tm_basemap("OpenStreetMap.Mapnik")+
tm_shape(state_and_data)+
tm_polygons("year_2000",
#style="kmeans", # natural r way of scallin
title=c("Income Inequality Ratio"),
palette="Blues",
#n=8, # works with style line
breaks=c(4.2, 4.7, 5.2, 5.7, 6.2, 6.7),
legend.hist = TRUE) +
tm_text("stusps",
size = 0.5) +
tm_layout(legend.outside = TRUE,
title = "50/10 Individual Income Inequality Ratio \n US STATEs 2000",
title.size =1.5,
legend.frame = TRUE,
) + tm_compass(position = c("right","top")) + tm_format("World",
legend.position = c("left", "bottom"),
main.title.position =c("center")) + tm_scale_bar(position = c("left","bottom"))
gc()
## used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
## Ncells 5169375 276.1 8389494 448.1 NA 8389494 448.1
## Vcells 9630802 73.5 27202776 207.6 16384 27133029 207.1
tmap_mode("plot")
## tmap mode set to plotting
tm_basemap("OpenStreetMap.Mapnik")+
tm_shape(state_and_data)+
tm_polygons("year_2020",
#style="kmeans",
title=c("Income Inequality Ratio"),
palette="Blues",
#n=8,
breaks=c(4.2, 4.7, 5.2, 5.7, 6.2, 6.7),
legend.hist = TRUE) +
tm_text("stusps",
size = 0.5) +
tm_layout(legend.outside = TRUE,
title = "50/10 Individual Income Inequality Ratio \n US STATEs 2020",
title.size =1.5,
legend.frame = TRUE,
) + tm_compass(position = c("right","top")) + tm_format("World",
legend.position = c("left", "bottom"),
main.title.position =c("center")) + tm_scale_bar(position = c("left","bottom"))
library(dplyr)
state_and_data$year_2000<- as.numeric(state_and_data$year_2000)
state_and_data$year_2020<- as.numeric(state_and_data$year_2020)
state_and_data <- state_and_data %>%
mutate(changes = case_when(
year_2000 < year_2020 ~ "Increased",
year_2000 > year_2020 ~ "Decreased",
TRUE ~ "No Changes"
))
gc()
## used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
## Ncells 5175853 276.5 8389494 448.1 NA 8389494 448.1
## Vcells 9645738 73.6 32723331 249.7 16384 27199506 207.6
tmap_mode("plot")
## tmap mode set to plotting
tm_basemap("OpenStreetMap.Mapnik") +
tm_shape(state_and_data) +
tm_polygons("changes",
title = "Income Inequality Ratio",
palette = c("#ADD8E6", "#FFB6C1", "grey"), # Specify colors for each category
#labels = c("Decrease", "Increase", "No Change"), # Label categories
legend.show = TRUE) +
tm_text("stusps", size = 0.5) +
tm_layout(legend.outside = TRUE,
title = "50/10 Individual Income Inequality Ratio\nUS STATES 2000-2020 changes",
title.size = 1.5,
legend.frame = TRUE) +
tm_compass(position = c("right", "top")) +
tm_format("World",
legend.position = c("left", "bottom"),
main.title.position = c("center")) +
tm_scale_bar(position = c("left", "bottom"))