library(readxl)
Analisi_muestreo2 <- read_excel("Analisi_muestreo1.xlsx", 
    sheet = "muestreo2")
#View(Analisi_muestreo2)
datos <- read_excel("Analisi_muestreo1.xlsx", 
    sheet = "muestreo2")
summary(datos)
##  TRATAMIENTOS         TEMP_HOJA       NUM_HOJAS         SPAD      
##  Length:16          Min.   :11.66   Min.   :5.00   Min.   :39.40  
##  Class :character   1st Qu.:15.14   1st Qu.:5.00   1st Qu.:43.75  
##  Mode  :character   Median :16.07   Median :5.50   Median :45.20  
##                     Mean   :16.13   Mean   :5.75   Mean   :45.21  
##                     3rd Qu.:17.37   3rd Qu.:6.25   3rd Qu.:46.62  
##                     Max.   :20.00   Max.   :7.00   Max.   :50.50  
##    ALTURA_AER      DIAMETRO_R       PF_AEREO        PF_RAIZ      
##  Min.   : 9.20   Min.   :13.82   Min.   :2.540   Min.   : 2.570  
##  1st Qu.:10.43   1st Qu.:24.53   1st Qu.:3.650   1st Qu.: 7.735  
##  Median :10.95   Median :26.97   Median :4.295   Median :10.045  
##  Mean   :11.81   Mean   :27.57   Mean   :4.613   Mean   :11.748  
##  3rd Qu.:13.82   3rd Qu.:29.02   3rd Qu.:4.718   3rd Qu.:11.335  
##  Max.   :16.30   Max.   :39.55   Max.   :8.470   Max.   :27.990  
##     PS_AEREO         PS_RAIZ         ESTOMAS_A      ESTOMAS_PA   
##  Min.   :0.2100   Min.   :0.2200   Min.   : 1.0   Min.   : 3.00  
##  1st Qu.:0.3600   1st Qu.:0.4075   1st Qu.: 7.0   1st Qu.: 8.00  
##  Median :0.4650   Median :0.5200   Median : 9.0   Median :13.00  
##  Mean   :0.4725   Mean   :0.5450   Mean   : 9.5   Mean   :13.44  
##  3rd Qu.:0.5500   3rd Qu.:0.6275   3rd Qu.:12.0   3rd Qu.:16.25  
##  Max.   :0.7600   Max.   :0.9700   Max.   :20.0   Max.   :38.00  
##    ESTOMAS_C      ESTOMAS_TOTALES  AREA_FOLIAR        A_DOSEL      
##  Min.   : 2.000   Min.   :14.00   Min.   : 45.69   Min.   : 59.45  
##  1st Qu.: 5.000   1st Qu.:20.75   1st Qu.: 70.49   1st Qu.: 94.44  
##  Median : 6.500   Median :30.50   Median : 93.29   Median :116.84  
##  Mean   : 9.375   Mean   :32.31   Mean   :103.82   Mean   :121.57  
##  3rd Qu.:12.750   3rd Qu.:41.75   3rd Qu.:113.59   3rd Qu.:129.58  
##  Max.   :24.000   Max.   :64.00   Max.   :212.80   Max.   :215.44  
##       CRA       
##  Min.   :62.70  
##  1st Qu.:71.98  
##  Median :75.54  
##  Mean   :75.61  
##  3rd Qu.:78.77  
##  Max.   :86.96

TEMPERATURA

res_anova <- aov(TEMP_HOJA ~ TRATAMIENTOS, data = datos)
summary(res_anova)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## TRATAMIENTOS  3  42.22  14.074   5.046 0.0173 *
## Residuals    12  33.47   2.789                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey <- TukeyHSD(res_anova)
print(res_tukey)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = TEMP_HOJA ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                  diff        lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS   -0.210 -3.7162322 3.2962322 0.9978888
## ROJA_CONTROL-AMARILLO_50_AS     3.855  0.3487678 7.3612322 0.0299176
## VERDE_50_AS1000-AMARILLO_50_AS  0.890 -2.6162322 4.3962322 0.8734229
## ROJA_CONTROL-AZUL_50_AS600      4.065  0.5587678 7.5712322 0.0219123
## VERDE_50_AS1000-AZUL_50_AS600   1.100 -2.4062322 4.6062322 0.7889541
## VERDE_50_AS1000-ROJA_CONTROL   -2.965 -6.4712322 0.5412322 0.1085383
library(agricolae)
dt <- duncan.test(res_anova, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for TEMP_HOJA 
## 
## Mean Square Error:  2.789458 
## 
## TRATAMIENTOS,  means
## 
##                 TEMP_HOJA      std r   Min   Max
## AMARILLO_50_AS     14.995 1.317915 4 13.06 15.86
## AZUL_50_AS600      14.785 2.206740 4 11.66 16.40
## ROJA_CONTROL       18.850 1.185214 4 17.19 20.00
## VERDE_50_AS1000    15.885 1.773838 4 13.62 17.90
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 2.573149 2.693348 2.766175 
## 
## Means with the same letter are not significantly different.
## 
##                 TEMP_HOJA groups
## ROJA_CONTROL       18.850      a
## VERDE_50_AS1000    15.885      b
## AMARILLO_50_AS     14.995      b
## AZUL_50_AS600      14.785      b
plot(dt)

NUEMRRO DE HOJAS

res_anova2 <- aov(NUM_HOJAS ~ TRATAMIENTOS, data = datos)
summary(res_anova2)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3      3  1.0000     1.5  0.265
## Residuals    12      8  0.6667
res_tukey2 <- TukeyHSD(res_anova2)
print(res_tukey2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = NUM_HOJAS ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                diff        lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS      0 -1.7140959 1.7140959 1.0000000
## ROJA_CONTROL-AMARILLO_50_AS       1 -0.7140959 2.7140959 0.3502697
## VERDE_50_AS1000-AMARILLO_50_AS    0 -1.7140959 1.7140959 1.0000000
## ROJA_CONTROL-AZUL_50_AS600        1 -0.7140959 2.7140959 0.3502697
## VERDE_50_AS1000-AZUL_50_AS600     0 -1.7140959 1.7140959 1.0000000
## VERDE_50_AS1000-ROJA_CONTROL     -1 -2.7140959 0.7140959 0.3502697
dt2 <- duncan.test(res_anova2, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova2 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for NUM_HOJAS 
## 
## Mean Square Error:  0.6666667 
## 
## TRATAMIENTOS,  means
## 
##                 NUM_HOJAS       std r Min Max
## AMARILLO_50_AS        5.5 0.5773503 4   5   6
## AZUL_50_AS600         5.5 1.0000000 4   5   7
## ROJA_CONTROL          6.5 0.5773503 4   6   7
## VERDE_50_AS1000       5.5 1.0000000 4   5   7
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 1.257938 1.316700 1.352303 
## 
## Means with the same letter are not significantly different.
## 
##                 NUM_HOJAS groups
## ROJA_CONTROL          6.5      a
## AMARILLO_50_AS        5.5      a
## AZUL_50_AS600         5.5      a
## VERDE_50_AS1000       5.5      a
plot(dt2)

SPAD

res_anova3 <- aov(SPAD ~ TRATAMIENTOS, data = datos)
summary(res_anova3)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3   7.09   2.362   0.225  0.877
## Residuals    12 125.91  10.493
res_tukey3 <- TukeyHSD(res_anova3)
print(res_tukey3)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = SPAD ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                 diff       lwr      upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    0.10 -6.700177 6.900177 0.9999683
## ROJA_CONTROL-AMARILLO_50_AS    -1.35 -8.150177 5.450177 0.9333748
## VERDE_50_AS1000-AMARILLO_50_AS -1.20 -8.000177 5.600177 0.9516671
## ROJA_CONTROL-AZUL_50_AS600     -1.45 -8.250177 5.350177 0.9193587
## VERDE_50_AS1000-AZUL_50_AS600  -1.30 -8.100177 5.500177 0.9398385
## VERDE_50_AS1000-ROJA_CONTROL    0.15 -6.650177 6.950177 0.9998932
dt3 <- duncan.test(res_anova3, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova3 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for SPAD 
## 
## Mean Square Error:  10.4925 
## 
## TRATAMIENTOS,  means
## 
##                   SPAD       std r  Min  Max
## AMARILLO_50_AS  45.825 4.5287047 4 39.4 49.8
## AZUL_50_AS600   45.925 3.4912987 4 42.0 50.5
## ROJA_CONTROL    44.475 0.9142392 4 43.3 45.2
## VERDE_50_AS1000 44.625 2.9044506 4 41.5 48.5
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 4.990504 5.223625 5.364870 
## 
## Means with the same letter are not significantly different.
## 
##                   SPAD groups
## AZUL_50_AS600   45.925      a
## AMARILLO_50_AS  45.825      a
## VERDE_50_AS1000 44.625      a
## ROJA_CONTROL    44.475      a
plot(dt3)

ALTURA PARTE AEREA

res_anova4 <- aov(ALTURA_AER ~ TRATAMIENTOS, data = datos)
summary(res_anova4)
##              Df Sum Sq Mean Sq F value  Pr(>F)   
## TRATAMIENTOS  3  45.08  15.026   9.092 0.00205 **
## Residuals    12  19.83   1.653                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey4 <- TukeyHSD(res_anova4)
print(res_tukey4)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = ALTURA_AER ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                  diff       lwr        upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS   -0.100 -2.798851  2.5988506 0.9994955
## ROJA_CONTROL-AMARILLO_50_AS     4.025  1.326149  6.7238506 0.0039574
## VERDE_50_AS1000-AMARILLO_50_AS  0.800 -1.898851  3.4988506 0.8150990
## ROJA_CONTROL-AZUL_50_AS600      4.125  1.426149  6.8238506 0.0032835
## VERDE_50_AS1000-AZUL_50_AS600   0.900 -1.798851  3.5988506 0.7577373
## VERDE_50_AS1000-ROJA_CONTROL   -3.225 -5.923851 -0.5261494 0.0182067
dt4 <- duncan.test(res_anova4, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova4 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for ALTURA_AER 
## 
## Mean Square Error:  1.652708 
## 
## TRATAMIENTOS,  means
## 
##                 ALTURA_AER       std r  Min  Max
## AMARILLO_50_AS      10.625 0.8616844 4  9.9 11.6
## AZUL_50_AS600       10.525 0.2500000 4 10.2 10.8
## ROJA_CONTROL        14.650 1.1561430 4 13.8 16.3
## VERDE_50_AS1000     11.425 2.1140404 4  9.2 14.2
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 1.980629 2.073150 2.129207 
## 
## Means with the same letter are not significantly different.
## 
##                 ALTURA_AER groups
## ROJA_CONTROL        14.650      a
## VERDE_50_AS1000     11.425      b
## AMARILLO_50_AS      10.625      b
## AZUL_50_AS600       10.525      b
plot(dt4)

DIAMETRO DE LA RAIZ

res_anova5 <- aov(DIAMETRO_R ~ TRATAMIENTOS, data = datos)
summary(res_anova5)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## TRATAMIENTOS  3  325.0  108.33   4.778 0.0205 *
## Residuals    12  272.1   22.67                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey5 <- TukeyHSD(res_anova5)
print(res_tukey5)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = DIAMETRO_R ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                    diff         lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS     0.6575  -9.3384454 10.653445 0.9972120
## ROJA_CONTROL-AMARILLO_50_AS      9.2575  -0.7384454 19.253445 0.0727871
## VERDE_50_AS1000-AMARILLO_50_AS  -2.7925 -12.7884454  7.203445 0.8395734
## ROJA_CONTROL-AZUL_50_AS600       8.6000  -1.3959454 18.595945 0.1009884
## VERDE_50_AS1000-AZUL_50_AS600   -3.4500 -13.4459454  6.545945 0.7387215
## VERDE_50_AS1000-ROJA_CONTROL   -12.0500 -22.0459454 -2.054055 0.0172353
dt5 <- duncan.test(res_anova5, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova5 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for DIAMETRO_R 
## 
## Mean Square Error:  22.67181 
## 
## TRATAMIENTOS,  means
## 
##                 DIAMETRO_R      std r   Min   Max
## AMARILLO_50_AS     25.7875 2.260389 4 23.82 28.61
## AZUL_50_AS600      26.4450 4.349234 4 20.21 30.25
## ROJA_CONTROL       35.0450 5.318988 4 28.02 39.55
## VERDE_50_AS1000    22.9950 6.194387 4 13.82 26.75
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 7.335810 7.678487 7.886111 
## 
## Means with the same letter are not significantly different.
## 
##                 DIAMETRO_R groups
## ROJA_CONTROL       35.0450      a
## AZUL_50_AS600      26.4450      b
## AMARILLO_50_AS     25.7875      b
## VERDE_50_AS1000    22.9950      b
plot(dt5)

PESO FRESCO *PARTE AEREA

res_anova6 <- aov(PF_AEREO ~ TRATAMIENTOS, data = datos)
summary(res_anova6)
##              Df Sum Sq Mean Sq F value Pr(>F)   
## TRATAMIENTOS  3  32.29  10.763   10.56 0.0011 **
## Residuals    12  12.23   1.019                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey6 <- TukeyHSD(res_anova6)
print(res_tukey6)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = PF_AEREO ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                   diff       lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS   -0.2650 -2.384676  1.854676 0.9817174
## ROJA_CONTROL-AMARILLO_50_AS     3.1700  1.050324  5.289676 0.0038756
## VERDE_50_AS1000-AMARILLO_50_AS -0.0425 -2.162176  2.077176 0.9999197
## ROJA_CONTROL-AZUL_50_AS600      3.4350  1.315324  5.554676 0.0020757
## VERDE_50_AS1000-AZUL_50_AS600   0.2225 -1.897176  2.342176 0.9889746
## VERDE_50_AS1000-ROJA_CONTROL   -3.2125 -5.332176 -1.092824 0.0035029
dt6 <- duncan.test(res_anova6, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova6 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for PF_AEREO 
## 
## Mean Square Error:  1.019477 
## 
## TRATAMIENTOS,  means
## 
##                 PF_AEREO       std r  Min  Max
## AMARILLO_50_AS    3.8975 0.9218957 4 2.54 4.57
## AZUL_50_AS600     3.6325 0.5144171 4 3.11 4.30
## ROJA_CONTROL      7.0675 1.4697024 4 5.13 8.47
## VERDE_50_AS1000   3.8550 0.8963072 4 2.56 4.58
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 1.555585 1.628251 1.672278 
## 
## Means with the same letter are not significantly different.
## 
##                 PF_AEREO groups
## ROJA_CONTROL      7.0675      a
## AMARILLO_50_AS    3.8975      b
## VERDE_50_AS1000   3.8550      b
## AZUL_50_AS600     3.6325      b
plot(dt6)

*RAIZ TUBEROSA

res_anova7 <- aov(PF_RAIZ ~ TRATAMIENTOS, data = datos)
summary(res_anova7)
##              Df Sum Sq Mean Sq F value  Pr(>F)   
## TRATAMIENTOS  3  453.7   151.2   7.875 0.00361 **
## Residuals    12  230.4    19.2                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey7 <- TukeyHSD(res_anova7)
print(res_tukey7)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = PF_RAIZ ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                    diff        lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    -0.4500  -9.649637  8.749637 0.9988443
## ROJA_CONTROL-AMARILLO_50_AS     11.6625   2.462863 20.862137 0.0124718
## VERDE_50_AS1000-AMARILLO_50_AS  -1.3100 -10.509637  7.889637 0.9734845
## ROJA_CONTROL-AZUL_50_AS600      12.1125   2.912863 21.312137 0.0096794
## VERDE_50_AS1000-AZUL_50_AS600   -0.8600 -10.059637  8.339637 0.9921399
## VERDE_50_AS1000-ROJA_CONTROL   -12.9725 -22.172137 -3.772863 0.0059832
dt7 <- duncan.test(res_anova7, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova7 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for PF_RAIZ 
## 
## Mean Square Error:  19.20348 
## 
## TRATAMIENTOS,  means
## 
##                 PF_RAIZ      std r   Min   Max
## AMARILLO_50_AS   9.2725 1.869409 4  6.67 11.12
## AZUL_50_AS600    8.8225 1.429717 4  7.33 10.11
## ROJA_CONTROL    20.9350 7.356333 4 10.76 27.99
## VERDE_50_AS1000  7.9625 4.142402 4  2.57 11.98
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 6.751416 7.066794 7.257878 
## 
## Means with the same letter are not significantly different.
## 
##                 PF_RAIZ groups
## ROJA_CONTROL    20.9350      a
## AMARILLO_50_AS   9.2725      b
## AZUL_50_AS600    8.8225      b
## VERDE_50_AS1000  7.9625      b
plot(dt7)

PESO SECO *PARTE AEREA

res_anova8 <- aov(PS_AEREO ~ TRATAMIENTOS, data = datos)
summary(res_anova8)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## TRATAMIENTOS  3 0.1971 0.06568   4.397 0.0263 *
## Residuals    12 0.1792 0.01494                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey8 <- TukeyHSD(res_anova8)
print(res_tukey8)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = PS_AEREO ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                   diff          lwr        upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS   -0.0250 -0.281578165 0.23157817 0.9911271
## ROJA_CONTROL-AMARILLO_50_AS     0.2525 -0.004078165 0.50907817 0.0542369
## VERDE_50_AS1000-AMARILLO_50_AS  0.0225 -0.234078165 0.27907817 0.9934839
## ROJA_CONTROL-AZUL_50_AS600      0.2775  0.020921835 0.53407817 0.0328336
## VERDE_50_AS1000-AZUL_50_AS600   0.0475 -0.209078165 0.30407817 0.9448767
## VERDE_50_AS1000-ROJA_CONTROL   -0.2300 -0.486578165 0.02657817 0.0844716
dt8 <- duncan.test(res_anova8, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova8 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for PS_AEREO 
## 
## Mean Square Error:  0.0149375 
## 
## TRATAMIENTOS,  means
## 
##                 PS_AEREO       std r  Min  Max
## AMARILLO_50_AS    0.4100 0.1344123 4 0.21 0.50
## AZUL_50_AS600     0.3850 0.1072381 4 0.30 0.54
## ROJA_CONTROL      0.6625 0.1184272 4 0.50 0.76
## VERDE_50_AS1000   0.4325 0.1271154 4 0.27 0.58
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##         2         3         4 
## 0.1882972 0.1970931 0.2024225 
## 
## Means with the same letter are not significantly different.
## 
##                 PS_AEREO groups
## ROJA_CONTROL      0.6625      a
## VERDE_50_AS1000   0.4325      b
## AMARILLO_50_AS    0.4100      b
## AZUL_50_AS600     0.3850      b
plot(dt8)

*RAIZ TUBEROSA

res_anova9 <- aov(PS_RAIZ ~ TRATAMIENTOS, data = datos)
summary(res_anova9)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3 0.1670 0.05568    1.69  0.222
## Residuals    12 0.3953 0.03295
res_tukey9 <- TukeyHSD(res_anova9)
print(res_tukey9)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = PS_RAIZ ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                   diff        lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    0.0275 -0.3535491 0.4085491 0.9963309
## ROJA_CONTROL-AMARILLO_50_AS     0.2375 -0.1435491 0.6185491 0.2984441
## VERDE_50_AS1000-AMARILLO_50_AS -0.0150 -0.3960491 0.3660491 0.9993955
## ROJA_CONTROL-AZUL_50_AS600      0.2100 -0.1710491 0.5910491 0.3962598
## VERDE_50_AS1000-AZUL_50_AS600  -0.0425 -0.4235491 0.3385491 0.9868498
## VERDE_50_AS1000-ROJA_CONTROL   -0.2525 -0.6335491 0.1285491 0.2528907
dt9 <- duncan.test(res_anova9, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova9 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for PS_RAIZ 
## 
## Mean Square Error:  0.03294583 
## 
## TRATAMIENTOS,  means
## 
##                 PS_RAIZ        std r  Min  Max
## AMARILLO_50_AS   0.4825 0.09844626 4 0.40 0.61
## AZUL_50_AS600    0.5100 0.03464102 4 0.46 0.54
## ROJA_CONTROL     0.7200 0.28118796 4 0.33 0.97
## VERDE_50_AS1000  0.4675 0.20451161 4 0.22 0.65
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##         2         3         4 
## 0.2796438 0.2927068 0.3006215 
## 
## Means with the same letter are not significantly different.
## 
##                 PS_RAIZ groups
## ROJA_CONTROL     0.7200      a
## AZUL_50_AS600    0.5100      a
## AMARILLO_50_AS   0.4825      a
## VERDE_50_AS1000  0.4675      a
plot(dt9)

NUMERO DE ESTOMAS *ABIERTOS

res_anova10 <- aov(ESTOMAS_A ~ TRATAMIENTOS, data = datos)
summary(res_anova10)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3   57.5   19.17   0.776   0.53
## Residuals    12  296.5   24.71
res_tukey10 <- TukeyHSD(res_anova10)
print(res_tukey10)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = ESTOMAS_A ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                 diff       lwr      upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    2.00  -8.43524 12.43524 0.9394219
## ROJA_CONTROL-AMARILLO_50_AS    -2.25 -12.68524  8.18524 0.9169494
## VERDE_50_AS1000-AMARILLO_50_AS -2.75 -13.18524  7.68524 0.8609849
## ROJA_CONTROL-AZUL_50_AS600     -4.25 -14.68524  6.18524 0.6329985
## VERDE_50_AS1000-AZUL_50_AS600  -4.75 -15.18524  5.68524 0.5503477
## VERDE_50_AS1000-ROJA_CONTROL   -0.50 -10.93524  9.93524 0.9989133
dt10 <- duncan.test(res_anova10, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova10 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for ESTOMAS_A 
## 
## Mean Square Error:  24.70833 
## 
## TRATAMIENTOS,  means
## 
##                 ESTOMAS_A      std r Min Max
## AMARILLO_50_AS      10.25 3.304038 4   7  14
## AZUL_50_AS600       12.25 5.315073 4   8  20
## ROJA_CONTROL         8.00 6.164414 4   1  16
## VERDE_50_AS1000      7.50 4.654747 4   3  12
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 7.658199 8.015936 8.232684 
## 
## Means with the same letter are not significantly different.
## 
##                 ESTOMAS_A groups
## AZUL_50_AS600       12.25      a
## AMARILLO_50_AS      10.25      a
## ROJA_CONTROL         8.00      a
## VERDE_50_AS1000      7.50      a
plot(dt10)

*PARCIALMENTE ABIERTOS

res_anova101 <- aov(ESTOMAS_A ~ TRATAMIENTOS, data = datos)
summary(res_anova101)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3   57.5   19.17   0.776   0.53
## Residuals    12  296.5   24.71
res_tukey101 <- TukeyHSD(res_anova101)
print(res_tukey101)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = ESTOMAS_A ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                 diff       lwr      upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    2.00  -8.43524 12.43524 0.9394219
## ROJA_CONTROL-AMARILLO_50_AS    -2.25 -12.68524  8.18524 0.9169494
## VERDE_50_AS1000-AMARILLO_50_AS -2.75 -13.18524  7.68524 0.8609849
## ROJA_CONTROL-AZUL_50_AS600     -4.25 -14.68524  6.18524 0.6329985
## VERDE_50_AS1000-AZUL_50_AS600  -4.75 -15.18524  5.68524 0.5503477
## VERDE_50_AS1000-ROJA_CONTROL   -0.50 -10.93524  9.93524 0.9989133
dt101 <- duncan.test(res_anova101, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova101 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for ESTOMAS_A 
## 
## Mean Square Error:  24.70833 
## 
## TRATAMIENTOS,  means
## 
##                 ESTOMAS_A      std r Min Max
## AMARILLO_50_AS      10.25 3.304038 4   7  14
## AZUL_50_AS600       12.25 5.315073 4   8  20
## ROJA_CONTROL         8.00 6.164414 4   1  16
## VERDE_50_AS1000      7.50 4.654747 4   3  12
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 7.658199 8.015936 8.232684 
## 
## Means with the same letter are not significantly different.
## 
##                 ESTOMAS_A groups
## AZUL_50_AS600       12.25      a
## AMARILLO_50_AS      10.25      a
## ROJA_CONTROL         8.00      a
## VERDE_50_AS1000      7.50      a
plot(dt101)

*CERRADOS

res_anova11 <- aov(ESTOMAS_C ~ TRATAMIENTOS, data = datos)
summary(res_anova11)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## TRATAMIENTOS  3  303.2  101.08   3.422 0.0526 .
## Residuals    12  354.5   29.54                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey11 <- TukeyHSD(res_anova11)
print(res_tukey11)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = ESTOMAS_C ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                  diff        lwr        upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS     9.50  -1.910331 20.9103307 0.1156647
## ROJA_CONTROL-AMARILLO_50_AS     -1.75 -13.160331  9.6603307 0.9672971
## VERDE_50_AS1000-AMARILLO_50_AS   0.75 -10.660331 12.1603307 0.9972179
## ROJA_CONTROL-AZUL_50_AS600     -11.25 -22.660331  0.1603307 0.0537284
## VERDE_50_AS1000-AZUL_50_AS600   -8.75 -20.160331  2.6603307 0.1582601
## VERDE_50_AS1000-ROJA_CONTROL     2.50  -8.910331 13.9103307 0.9133639
dt11 <- duncan.test(res_anova11, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova11 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for ESTOMAS_C 
## 
## Mean Square Error:  29.54167 
## 
## TRATAMIENTOS,  means
## 
##                 ESTOMAS_C      std r Min Max
## AMARILLO_50_AS       7.25 2.629956 4   5  11
## AZUL_50_AS600       16.75 7.632169 4   6  24
## ROJA_CONTROL         5.50 3.316625 4   2  10
## VERDE_50_AS1000      8.00 6.480741 4   2  15
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 8.373797 8.764962 9.001963 
## 
## Means with the same letter are not significantly different.
## 
##                 ESTOMAS_C groups
## AZUL_50_AS600       16.75      a
## VERDE_50_AS1000      8.00      b
## AMARILLO_50_AS       7.25      b
## ROJA_CONTROL         5.50      b
plot(dt11)

*ESTOMAS TOTALES

res_anova112 <- aov(ESTOMAS_A ~ TRATAMIENTOS, data = datos)
summary(res_anova112)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3   57.5   19.17   0.776   0.53
## Residuals    12  296.5   24.71
res_tukey112 <- TukeyHSD(res_anova112)
print(res_tukey112)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = ESTOMAS_A ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                 diff       lwr      upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    2.00  -8.43524 12.43524 0.9394219
## ROJA_CONTROL-AMARILLO_50_AS    -2.25 -12.68524  8.18524 0.9169494
## VERDE_50_AS1000-AMARILLO_50_AS -2.75 -13.18524  7.68524 0.8609849
## ROJA_CONTROL-AZUL_50_AS600     -4.25 -14.68524  6.18524 0.6329985
## VERDE_50_AS1000-AZUL_50_AS600  -4.75 -15.18524  5.68524 0.5503477
## VERDE_50_AS1000-ROJA_CONTROL   -0.50 -10.93524  9.93524 0.9989133
dt112 <- duncan.test(res_anova112, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova112 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for ESTOMAS_A 
## 
## Mean Square Error:  24.70833 
## 
## TRATAMIENTOS,  means
## 
##                 ESTOMAS_A      std r Min Max
## AMARILLO_50_AS      10.25 3.304038 4   7  14
## AZUL_50_AS600       12.25 5.315073 4   8  20
## ROJA_CONTROL         8.00 6.164414 4   1  16
## VERDE_50_AS1000      7.50 4.654747 4   3  12
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 7.658199 8.015936 8.232684 
## 
## Means with the same letter are not significantly different.
## 
##                 ESTOMAS_A groups
## AZUL_50_AS600       12.25      a
## AMARILLO_50_AS      10.25      a
## ROJA_CONTROL         8.00      a
## VERDE_50_AS1000      7.50      a
plot(dt112)

AREA FOLIAR

res_anova12 <- aov(AREA_FOLIAR ~ TRATAMIENTOS, data = datos)
summary(res_anova12)
##              Df Sum Sq Mean Sq F value  Pr(>F)   
## TRATAMIENTOS  3  22765    7588   7.888 0.00359 **
## Residuals    12  11544     962                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey12 <- TukeyHSD(res_anova12)
print(res_tukey12)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = AREA_FOLIAR ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                    diff        lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    -8.6125  -73.72476  56.49976 0.9785096
## ROJA_CONTROL-AMARILLO_50_AS     81.0850   15.97274 146.19726 0.0140108
## VERDE_50_AS1000-AMARILLO_50_AS  -8.3600  -73.47226  56.75226 0.9802648
## ROJA_CONTROL-AZUL_50_AS600      89.6975   24.58524 154.80976 0.0070692
## VERDE_50_AS1000-AZUL_50_AS600    0.2525  -64.85976  65.36476 0.9999994
## VERDE_50_AS1000-ROJA_CONTROL   -89.4450 -154.55726 -24.33274 0.0072115
dt12 <- duncan.test(res_anova12, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova12 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for AREA_FOLIAR 
## 
## Mean Square Error:  961.9756 
## 
## TRATAMIENTOS,  means
## 
##                 AREA_FOLIAR      std r    Min    Max
## AMARILLO_50_AS      87.7875 31.41195 4  45.69 120.72
## AZUL_50_AS600       79.1750 15.63701 4  60.54  97.07
## ROJA_CONTROL       168.8725 44.17845 4 107.52 212.80
## VERDE_50_AS1000     79.4275 25.78645 4  56.81 111.22
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 47.78449 50.01665 51.36908 
## 
## Means with the same letter are not significantly different.
## 
##                 AREA_FOLIAR groups
## ROJA_CONTROL       168.8725      a
## AMARILLO_50_AS      87.7875      b
## VERDE_50_AS1000     79.4275      b
## AZUL_50_AS600       79.1750      b
plot(dt12)

AREA BAJO EL DOSEL

res_anova13 <- aov(A_DOSEL ~ TRATAMIENTOS, data = datos)
summary(res_anova13)
##              Df Sum Sq Mean Sq F value  Pr(>F)   
## TRATAMIENTOS  3  17232    5744   7.062 0.00544 **
## Residuals    12   9761     813                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey13 <- TukeyHSD(res_anova13)
print(res_tukey13)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = A_DOSEL ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                    diff        lwr        upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS   -11.9675  -71.84006  47.905059 0.9321405
## ROJA_CONTROL-AMARILLO_50_AS     73.1950   13.32244 133.067559 0.0157742
## VERDE_50_AS1000-AMARILLO_50_AS  11.7025  -48.17006  71.575059 0.9361157
## ROJA_CONTROL-AZUL_50_AS600      85.1625   25.28994 145.035059 0.0056189
## VERDE_50_AS1000-AZUL_50_AS600   23.6700  -36.20256  83.542559 0.6536464
## VERDE_50_AS1000-ROJA_CONTROL   -61.4925 -121.36506  -1.619941 0.0435111
dt13 <- duncan.test(res_anova13, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova13 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for A_DOSEL 
## 
## Mean Square Error:  813.3813 
## 
## TRATAMIENTOS,  means
## 
##                  A_DOSEL      std r    Min    Max
## AMARILLO_50_AS  103.3375 31.19703 4  59.45 128.38
## AZUL_50_AS600    91.3700 17.09741 4  70.14 111.58
## ROJA_CONTROL    176.5325 41.45552 4 118.92 215.44
## VERDE_50_AS1000 115.0400 16.41308 4  93.30 133.18
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 43.93919 45.99171 47.23531 
## 
## Means with the same letter are not significantly different.
## 
##                  A_DOSEL groups
## ROJA_CONTROL    176.5325      a
## VERDE_50_AS1000 115.0400      b
## AMARILLO_50_AS  103.3375      b
## AZUL_50_AS600    91.3700      b
plot(dt13)

CONTENIDO RELATIVO DE AGUA

res_anova14 <- aov(CRA ~ TRATAMIENTOS, data = datos)
summary(res_anova14)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## TRATAMIENTOS  3  225.3   75.11   2.897 0.0789 .
## Residuals    12  311.1   25.93                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey14 <- TukeyHSD(res_anova14)
print(res_tukey14)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = CRA ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                    diff        lwr        upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS   -9.90125 -20.590516  0.7880158 0.0727306
## ROJA_CONTROL-AMARILLO_50_AS    -2.07000 -12.759266  8.6192658 0.9376986
## VERDE_50_AS1000-AMARILLO_50_AS -5.53375 -16.223016  5.1555158 0.4473290
## ROJA_CONTROL-AZUL_50_AS600      7.83125  -2.858016 18.5205158 0.1853911
## VERDE_50_AS1000-AZUL_50_AS600   4.36750  -6.321766 15.0567658 0.6307225
## VERDE_50_AS1000-ROJA_CONTROL   -3.46375 -14.153016  7.2255158 0.7728185
dt14 <- duncan.test(res_anova14, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova14 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for CRA 
## 
## Mean Square Error:  25.92593 
## 
## TRATAMIENTOS,  means
## 
##                      CRA      std r    Min    Max
## AMARILLO_50_AS  79.98125 3.407018 4 77.150 84.920
## AZUL_50_AS600   70.08000 5.597903 4 62.705 76.285
## ROJA_CONTROL    77.91125 6.106404 4 73.610 86.960
## VERDE_50_AS1000 74.44750 4.844713 4 70.420 81.435
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 7.844623 8.211068 8.433093 
## 
## Means with the same letter are not significantly different.
## 
##                      CRA groups
## AMARILLO_50_AS  79.98125      a
## ROJA_CONTROL    77.91125     ab
## VERDE_50_AS1000 74.44750     ab
## AZUL_50_AS600   70.08000      b
plot(dt14)