library(readxl)
Analisi_muestreo1 <- read_excel("Analisi_muestreo1.xlsx")
#View(Analisi_muestreo1)
datos <- read_excel("Analisi_muestreo1.xlsx")
summary(datos)
##  TRATAMIENTOS         TEMP_HOJA         NUM_HOJAS         SPAD      
##  Length:16          Min.   :  18.28   Min.   :3.00   Min.   :31.20  
##  Class :character   1st Qu.:  19.27   1st Qu.:4.00   1st Qu.:41.77  
##  Mode  :character   Median :  19.42   Median :4.00   Median :43.90  
##                     Mean   : 133.44   Mean   :4.25   Mean   :42.80  
##                     3rd Qu.:  20.06   3rd Qu.:5.00   3rd Qu.:44.88  
##                     Max.   :1841.00   Max.   :6.00   Max.   :50.60  
##    ALTURA_AER      DIAMETRO_R       PF_AEREO        PF_RAIZ     
##  Min.   : 8.20   Min.   :14.22   Min.   :1.260   Min.   :2.200  
##  1st Qu.:10.05   1st Qu.:18.20   1st Qu.:2.252   1st Qu.:3.835  
##  Median :10.80   Median :19.41   Median :2.545   Median :4.130  
##  Mean   :11.01   Mean   :20.05   Mean   :2.776   Mean   :4.945  
##  3rd Qu.:11.60   3rd Qu.:23.11   3rd Qu.:3.232   3rd Qu.:6.367  
##  Max.   :15.80   Max.   :24.63   Max.   :4.940   Max.   :8.420  
##     PS_AEREO         PS_RAIZ         ESTOMAS_A       ESTOMAS_PA   
##  Min.   :0.1400   Min.   :0.1800   Min.   : 4.00   Min.   : 7.00  
##  1st Qu.:0.2625   1st Qu.:0.2875   1st Qu.: 9.75   1st Qu.:12.00  
##  Median :0.2850   Median :0.3150   Median :15.50   Median :13.00  
##  Mean   :0.3031   Mean   :0.3306   Mean   :14.00   Mean   :15.19  
##  3rd Qu.:0.3600   3rd Qu.:0.3750   3rd Qu.:19.25   3rd Qu.:17.50  
##  Max.   :0.5100   Max.   :0.4700   Max.   :22.00   Max.   :27.00  
##    ESTOMAS_C     ESTOMAS_TOTALES  AREA_FOLIAR        A_DOSEL      
##  Min.   : 3.00   Min.   :24.00   Min.   : 26.78   Min.   : 26.86  
##  1st Qu.: 9.00   1st Qu.:36.25   1st Qu.: 56.09   1st Qu.: 42.58  
##  Median :20.50   Median :50.00   Median : 66.14   Median : 62.84  
##  Mean   :16.31   Mean   :45.50   Mean   : 68.76   Mean   : 66.45  
##  3rd Qu.:23.00   3rd Qu.:52.25   3rd Qu.: 86.74   3rd Qu.: 81.65  
##  Max.   :30.00   Max.   :64.00   Max.   :108.71   Max.   :146.80  
##       CRA       
##  Min.   :64.75  
##  1st Qu.:69.32  
##  Median :71.95  
##  Mean   :72.90  
##  3rd Qu.:75.43  
##  Max.   :83.22

TEMPERATURA

res_anova <- aov(TEMP_HOJA ~ TRATAMIENTOS, data = datos)
summary(res_anova)
##              Df  Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3  622072  207357       1  0.426
## Residuals    12 2488091  207341
res_tukey <- TukeyHSD(res_anova)
print(res_tukey)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = TEMP_HOJA ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                     diff        lwr      upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS   -455.6200 -1411.5438 500.3038 0.5141295
## ROJA_CONTROL-AMARILLO_50_AS    -455.7775 -1411.7013 500.1463 0.5138541
## VERDE_50_AS1000-AMARILLO_50_AS -454.6950 -1410.6188 501.2288 0.5157476
## ROJA_CONTROL-AZUL_50_AS600       -0.1575  -956.0813 955.7663 1.0000000
## VERDE_50_AS1000-AZUL_50_AS600     0.9250  -954.9988 956.8488 1.0000000
## VERDE_50_AS1000-ROJA_CONTROL      1.0825  -954.8413 957.0063 1.0000000
library(agricolae)
dt <- duncan.test(res_anova, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for TEMP_HOJA 
## 
## Mean Square Error:  207340.9 
## 
## TRATAMIENTOS,  means
## 
##                 TEMP_HOJA         std r   Min     Max
## AMARILLO_50_AS   474.9600 910.6934413 4 19.28 1841.00
## AZUL_50_AS600     19.3400   0.4298837 4 18.78   19.80
## ROJA_CONTROL      19.1825   0.7040064 4 18.28   20.00
## VERDE_50_AS1000   20.2650   0.7558439 4 19.34   21.06
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 701.5320 734.3026 754.1579 
## 
## Means with the same letter are not significantly different.
## 
##                 TEMP_HOJA groups
## AMARILLO_50_AS   474.9600      a
## VERDE_50_AS1000   20.2650      a
## AZUL_50_AS600     19.3400      a
## ROJA_CONTROL      19.1825      a
plot(dt)

NUEMRRO DE HOJAS

res_anova2 <- aov(NUM_HOJAS ~ TRATAMIENTOS, data = datos)
summary(res_anova2)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3      1  0.3333     0.5  0.689
## Residuals    12      8  0.6667
res_tukey2 <- TukeyHSD(res_anova2)
print(res_tukey2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = NUM_HOJAS ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                diff       lwr      upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    0.5 -1.214096 2.214096 0.8220125
## ROJA_CONTROL-AMARILLO_50_AS     0.5 -1.214096 2.214096 0.8220125
## VERDE_50_AS1000-AMARILLO_50_AS  0.0 -1.714096 1.714096 1.0000000
## ROJA_CONTROL-AZUL_50_AS600      0.0 -1.714096 1.714096 1.0000000
## VERDE_50_AS1000-AZUL_50_AS600  -0.5 -2.214096 1.214096 0.8220125
## VERDE_50_AS1000-ROJA_CONTROL   -0.5 -2.214096 1.214096 0.8220125
dt2 <- duncan.test(res_anova2, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova2 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for NUM_HOJAS 
## 
## Mean Square Error:  0.6666667 
## 
## TRATAMIENTOS,  means
## 
##                 NUM_HOJAS       std r Min Max
## AMARILLO_50_AS        4.0 0.0000000 4   4   4
## AZUL_50_AS600         4.5 1.0000000 4   4   6
## ROJA_CONTROL          4.5 0.5773503 4   4   5
## VERDE_50_AS1000       4.0 1.1547005 4   3   5
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 1.257938 1.316700 1.352303 
## 
## Means with the same letter are not significantly different.
## 
##                 NUM_HOJAS groups
## AZUL_50_AS600         4.5      a
## ROJA_CONTROL          4.5      a
## AMARILLO_50_AS        4.0      a
## VERDE_50_AS1000       4.0      a
plot(dt2)

SPAD

res_anova3 <- aov(SPAD ~ TRATAMIENTOS, data = datos)
summary(res_anova3)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3  88.31   29.43   1.752   0.21
## Residuals    12 201.63   16.80
res_tukey3 <- TukeyHSD(res_anova3)
print(res_tukey3)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = SPAD ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                  diff       lwr      upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    2.025  -6.58044 10.63044 0.8956467
## ROJA_CONTROL-AMARILLO_50_AS    -4.125 -12.73044  4.48044 0.5095905
## VERDE_50_AS1000-AMARILLO_50_AS  1.100  -7.50544  9.70544 0.9805139
## ROJA_CONTROL-AZUL_50_AS600     -6.150 -14.75544  2.45544 0.2011276
## VERDE_50_AS1000-AZUL_50_AS600  -0.925  -9.53044  7.68044 0.9881866
## VERDE_50_AS1000-ROJA_CONTROL    5.225  -3.38044 13.83044 0.3186913
dt3 <- duncan.test(res_anova3, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova3 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for SPAD 
## 
## Mean Square Error:  16.80292 
## 
## TRATAMIENTOS,  means
## 
##                   SPAD      std r  Min  Max
## AMARILLO_50_AS  43.050 3.617089 4 37.7 45.4
## AZUL_50_AS600   45.075 1.359841 4 43.8 47.0
## ROJA_CONTROL    38.925 5.766209 4 31.2 44.2
## VERDE_50_AS1000 44.150 4.362339 4 41.1 50.6
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 6.315348 6.610356 6.789098 
## 
## Means with the same letter are not significantly different.
## 
##                   SPAD groups
## AZUL_50_AS600   45.075      a
## VERDE_50_AS1000 44.150      a
## AMARILLO_50_AS  43.050      a
## ROJA_CONTROL    38.925      a
plot(dt3)

ALTURA PARTE AEREA

res_anova4 <- aov(ALTURA_AER ~ TRATAMIENTOS, data = datos)
summary(res_anova4)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## TRATAMIENTOS  3  19.21   6.402   2.934 0.0767 .
## Residuals    12  26.19   2.183                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey4 <- TukeyHSD(res_anova4)
print(res_tukey4)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = ALTURA_AER ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                 diff       lwr        upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    0.30 -2.801401 3.40140057 0.9913136
## ROJA_CONTROL-AMARILLO_50_AS     2.00 -1.101401 5.10140057 0.2727674
## VERDE_50_AS1000-AMARILLO_50_AS -1.05 -4.151401 2.05140057 0.7495008
## ROJA_CONTROL-AZUL_50_AS600      1.70 -1.401401 4.80140057 0.4006626
## VERDE_50_AS1000-AZUL_50_AS600  -1.35 -4.451401 1.75140057 0.5845050
## VERDE_50_AS1000-ROJA_CONTROL   -3.05 -6.151401 0.05140057 0.0544253
dt4 <- duncan.test(res_anova4, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova4 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for ALTURA_AER 
## 
## Mean Square Error:  2.1825 
## 
## TRATAMIENTOS,  means
## 
##                 ALTURA_AER       std r  Min  Max
## AMARILLO_50_AS       10.70 1.6832508 4  9.1 13.0
## AZUL_50_AS600        11.00 0.6271629 4 10.2 11.5
## ROJA_CONTROL         12.70 2.1055482 4 11.1 15.8
## VERDE_50_AS1000       9.65 1.0344080 4  8.2 10.6
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 2.276051 2.382372 2.446791 
## 
## Means with the same letter are not significantly different.
## 
##                 ALTURA_AER groups
## ROJA_CONTROL         12.70      a
## AZUL_50_AS600        11.00     ab
## AMARILLO_50_AS       10.70     ab
## VERDE_50_AS1000       9.65      b
plot(dt4)

DIAMETRO DE LA RAIZ

res_anova5 <- aov(DIAMETRO_R ~ TRATAMIENTOS, data = datos)
summary(res_anova5)
##              Df Sum Sq Mean Sq F value  Pr(>F)   
## TRATAMIENTOS  3  94.42   31.47   6.544 0.00718 **
## Residuals    12  57.72    4.81                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey5 <- TukeyHSD(res_anova5)
print(res_tukey5)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = DIAMETRO_R ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                   diff       lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS   -0.5275 -5.131637  4.076637 0.9857858
## ROJA_CONTROL-AMARILLO_50_AS     5.6575  1.053363 10.261637 0.0152678
## VERDE_50_AS1000-AMARILLO_50_AS  2.0600 -2.544137  6.664137 0.5636259
## ROJA_CONTROL-AZUL_50_AS600      6.1850  1.580863 10.789137 0.0084313
## VERDE_50_AS1000-AZUL_50_AS600   2.5875 -2.016637  7.191637 0.3803692
## VERDE_50_AS1000-ROJA_CONTROL   -3.5975 -8.201637  1.006637 0.1478252
dt5 <- duncan.test(res_anova5, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova5 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for DIAMETRO_R 
## 
## Mean Square Error:  4.809887 
## 
## TRATAMIENTOS,  means
## 
##                 DIAMETRO_R       std r   Min   Max
## AMARILLO_50_AS     18.2475 2.6078136 4 15.07 21.26
## AZUL_50_AS600      17.7200 2.4308983 4 14.22 19.72
## ROJA_CONTROL       23.9050 0.6783067 4 23.01 24.63
## VERDE_50_AS1000    20.3075 2.4636338 4 18.25 23.39
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 3.378877 3.536714 3.632346 
## 
## Means with the same letter are not significantly different.
## 
##                 DIAMETRO_R groups
## ROJA_CONTROL       23.9050      a
## VERDE_50_AS1000    20.3075      b
## AMARILLO_50_AS     18.2475      b
## AZUL_50_AS600      17.7200      b
plot(dt5)

PESO FRESCO *PARTE AEREA

res_anova6 <- aov(PF_AEREO ~ TRATAMIENTOS, data = datos)
summary(res_anova6)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## TRATAMIENTOS  3   8.00  2.6666   5.461 0.0134 *
## Residuals    12   5.86  0.4883                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey6 <- TukeyHSD(res_anova6)
print(res_tukey6)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = PF_AEREO ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                   diff          lwr        upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS   -0.2625 -1.729485938  1.2044859 0.9497811
## ROJA_CONTROL-AMARILLO_50_AS     1.4725  0.005514062  2.9394859 0.0490456
## VERDE_50_AS1000-AMARILLO_50_AS -0.1750 -1.641985938  1.2919859 0.9840266
## ROJA_CONTROL-AZUL_50_AS600      1.7350  0.268014062  3.2019859 0.0194062
## VERDE_50_AS1000-AZUL_50_AS600   0.0875 -1.379485938  1.5544859 0.9979146
## VERDE_50_AS1000-ROJA_CONTROL   -1.6475 -3.114485938 -0.1805141 0.0264684
dt6 <- duncan.test(res_anova6, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova6 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for PF_AEREO 
## 
## Mean Square Error:  0.4883042 
## 
## TRATAMIENTOS,  means
## 
##                 PF_AEREO       std r  Min  Max
## AMARILLO_50_AS    2.5175 0.4518388 4 2.17 3.18
## AZUL_50_AS600     2.2550 0.4224137 4 1.65 2.56
## ROJA_CONTROL      3.9900 0.7825599 4 3.08 4.94
## VERDE_50_AS1000   2.3425 0.9788897 4 1.26 3.39
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 1.076589 1.126880 1.157351 
## 
## Means with the same letter are not significantly different.
## 
##                 PF_AEREO groups
## ROJA_CONTROL      3.9900      a
## AMARILLO_50_AS    2.5175      b
## VERDE_50_AS1000   2.3425      b
## AZUL_50_AS600     2.2550      b
plot(dt6)

*RAIZ TUBEROSA

res_anova7 <- aov(PF_RAIZ ~ TRATAMIENTOS, data = datos)
summary(res_anova7)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## TRATAMIENTOS  3  50.05  16.682   22.81 3.02e-05 ***
## Residuals    12   8.78   0.731                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey7 <- TukeyHSD(res_anova7)
print(res_tukey7)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = PF_RAIZ ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                   diff        lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    0.0675 -1.7279234  1.862923 0.9994731
## ROJA_CONTROL-AMARILLO_50_AS     4.3425  2.5470766  6.137923 0.0000573
## VERDE_50_AS1000-AMARILLO_50_AS  1.0500 -0.7454234  2.845423 0.3483248
## ROJA_CONTROL-AZUL_50_AS600      4.2750  2.4795766  6.070423 0.0000668
## VERDE_50_AS1000-AZUL_50_AS600   0.9825 -0.8129234  2.777923 0.4020239
## VERDE_50_AS1000-ROJA_CONTROL   -3.2925 -5.0879234 -1.497077 0.0007419
dt7 <- duncan.test(res_anova7, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova7 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for PF_RAIZ 
## 
## Mean Square Error:  0.7314292 
## 
## TRATAMIENTOS,  means
## 
##                 PF_RAIZ       std r  Min  Max
## AMARILLO_50_AS   3.5800 0.8010826 4 2.39 4.13
## AZUL_50_AS600    3.6475 1.0389859 4 2.20 4.65
## ROJA_CONTROL     7.9225 0.3756217 4 7.53 8.42
## VERDE_50_AS1000  4.6300 1.0312129 4 3.59 5.98
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 1.317623 1.379173 1.416465 
## 
## Means with the same letter are not significantly different.
## 
##                 PF_RAIZ groups
## ROJA_CONTROL     7.9225      a
## VERDE_50_AS1000  4.6300      b
## AZUL_50_AS600    3.6475      b
## AMARILLO_50_AS   3.5800      b
plot(dt7)

PESO SECO *PARTE AEREA

res_anova8 <- aov(PS_AEREO ~ TRATAMIENTOS, data = datos)
summary(res_anova8)
##              Df  Sum Sq  Mean Sq F value Pr(>F)
## TRATAMIENTOS  3 0.04897 0.016323   2.592  0.101
## Residuals    12 0.07557 0.006298
res_tukey8 <- TukeyHSD(res_anova8)
print(res_tukey8)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = PS_AEREO ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                   diff         lwr        upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS   -0.0425 -0.20910161 0.12410161 0.8718295
## ROJA_CONTROL-AMARILLO_50_AS     0.0975 -0.06910161 0.26410161 0.3477680
## VERDE_50_AS1000-AMARILLO_50_AS -0.0325 -0.19910161 0.13410161 0.9364515
## ROJA_CONTROL-AZUL_50_AS600      0.1400 -0.02660161 0.30660161 0.1113864
## VERDE_50_AS1000-AZUL_50_AS600   0.0100 -0.15660161 0.17660161 0.9978751
## VERDE_50_AS1000-ROJA_CONTROL   -0.1300 -0.29660161 0.03660161 0.1485652
dt8 <- duncan.test(res_anova8, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova8 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for PS_AEREO 
## 
## Mean Square Error:  0.006297917 
## 
## TRATAMIENTOS,  means
## 
##                 PS_AEREO        std r  Min  Max
## AMARILLO_50_AS    0.2975 0.04193249 4 0.27 0.36
## AZUL_50_AS600     0.2550 0.05066228 4 0.19 0.30
## ROJA_CONTROL      0.3950 0.09609024 4 0.28 0.51
## VERDE_50_AS1000   0.2650 0.10785793 4 0.14 0.36
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##         2         3         4 
## 0.1222653 0.1279767 0.1314372 
## 
## Means with the same letter are not significantly different.
## 
##                 PS_AEREO groups
## ROJA_CONTROL      0.3950      a
## AMARILLO_50_AS    0.2975     ab
## VERDE_50_AS1000   0.2650      b
## AZUL_50_AS600     0.2550      b
plot(dt8)

*RAIZ TUBEROSA

res_anova9 <- aov(PS_RAIZ ~ TRATAMIENTOS, data = datos)
summary(res_anova9)
##              Df  Sum Sq  Mean Sq F value Pr(>F)  
## TRATAMIENTOS  3 0.05017 0.016723   4.809 0.0201 *
## Residuals    12 0.04172 0.003477                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey9 <- TukeyHSD(res_anova9)
print(res_tukey9)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = PS_RAIZ ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                   diff          lwr        upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    0.0050 -0.118790776 0.12879078 0.9993473
## ROJA_CONTROL-AMARILLO_50_AS     0.1375  0.013709224 0.26129078 0.0282163
## VERDE_50_AS1000-AMARILLO_50_AS  0.0700 -0.053790776 0.19379078 0.3753766
## ROJA_CONTROL-AZUL_50_AS600      0.1325  0.008709224 0.25629078 0.0347928
## VERDE_50_AS1000-AZUL_50_AS600   0.0650 -0.058790776 0.18879078 0.4357590
## VERDE_50_AS1000-ROJA_CONTROL   -0.0675 -0.191290776 0.05629078 0.4049345
dt9 <- duncan.test(res_anova9, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova9 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for PS_RAIZ 
## 
## Mean Square Error:  0.003477083 
## 
## TRATAMIENTOS,  means
## 
##                 PS_RAIZ        std r  Min  Max
## AMARILLO_50_AS   0.2775 0.03403430 4 0.23 0.31
## AZUL_50_AS600    0.2825 0.07500000 4 0.18 0.36
## ROJA_CONTROL     0.4150 0.04932883 4 0.36 0.47
## VERDE_50_AS1000  0.3475 0.06849574 4 0.27 0.43
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##          2          3          4 
## 0.09084739 0.09509114 0.09766238 
## 
## Means with the same letter are not significantly different.
## 
##                 PS_RAIZ groups
## ROJA_CONTROL     0.4150      a
## VERDE_50_AS1000  0.3475     ab
## AZUL_50_AS600    0.2825      b
## AMARILLO_50_AS   0.2775      b
plot(dt9)

NUMERO DE ESTOMAS *ABIERTOS

res_anova10 <- aov(ESTOMAS_A ~ TRATAMIENTOS, data = datos)
summary(res_anova10)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3  155.5   51.83   1.697   0.22
## Residuals    12  366.5   30.54
res_tukey10 <- TukeyHSD(res_anova10)
print(res_tukey10)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = ESTOMAS_A ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                 diff        lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    8.50  -3.101846 20.101846 0.1853788
## ROJA_CONTROL-AMARILLO_50_AS     5.25  -6.351846 16.851846 0.5549126
## VERDE_50_AS1000-AMARILLO_50_AS  6.25  -5.351846 17.851846 0.4148246
## ROJA_CONTROL-AZUL_50_AS600     -3.25 -14.851846  8.351846 0.8385065
## VERDE_50_AS1000-AZUL_50_AS600  -2.25 -13.851846  9.351846 0.9374523
## VERDE_50_AS1000-ROJA_CONTROL    1.00 -10.601846 12.601846 0.9938059
dt10 <- duncan.test(res_anova10, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova10 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for ESTOMAS_A 
## 
## Mean Square Error:  30.54167 
## 
## TRATAMIENTOS,  means
## 
##                 ESTOMAS_A      std r Min Max
## AMARILLO_50_AS       9.00 6.633250 4   4  18
## AZUL_50_AS600       17.50 4.358899 4  11  20
## ROJA_CONTROL        14.25 5.123475 4   9  20
## VERDE_50_AS1000     15.25 5.737305 4   8  22
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 8.514346 8.912076 9.153056 
## 
## Means with the same letter are not significantly different.
## 
##                 ESTOMAS_A groups
## AZUL_50_AS600       17.50      a
## VERDE_50_AS1000     15.25      a
## ROJA_CONTROL        14.25      a
## AMARILLO_50_AS       9.00      a
plot(dt10)

*PARCIALMENTE ABIERTOS

res_anova101 <- aov(ESTOMAS_A ~ TRATAMIENTOS, data = datos)
summary(res_anova101)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3  155.5   51.83   1.697   0.22
## Residuals    12  366.5   30.54
res_tukey101 <- TukeyHSD(res_anova101)
print(res_tukey101)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = ESTOMAS_A ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                 diff        lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    8.50  -3.101846 20.101846 0.1853788
## ROJA_CONTROL-AMARILLO_50_AS     5.25  -6.351846 16.851846 0.5549126
## VERDE_50_AS1000-AMARILLO_50_AS  6.25  -5.351846 17.851846 0.4148246
## ROJA_CONTROL-AZUL_50_AS600     -3.25 -14.851846  8.351846 0.8385065
## VERDE_50_AS1000-AZUL_50_AS600  -2.25 -13.851846  9.351846 0.9374523
## VERDE_50_AS1000-ROJA_CONTROL    1.00 -10.601846 12.601846 0.9938059
dt101 <- duncan.test(res_anova101, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova101 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for ESTOMAS_A 
## 
## Mean Square Error:  30.54167 
## 
## TRATAMIENTOS,  means
## 
##                 ESTOMAS_A      std r Min Max
## AMARILLO_50_AS       9.00 6.633250 4   4  18
## AZUL_50_AS600       17.50 4.358899 4  11  20
## ROJA_CONTROL        14.25 5.123475 4   9  20
## VERDE_50_AS1000     15.25 5.737305 4   8  22
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 8.514346 8.912076 9.153056 
## 
## Means with the same letter are not significantly different.
## 
##                 ESTOMAS_A groups
## AZUL_50_AS600       17.50      a
## VERDE_50_AS1000     15.25      a
## ROJA_CONTROL        14.25      a
## AMARILLO_50_AS       9.00      a
plot(dt101)

*CERRADOS

res_anova11 <- aov(ESTOMAS_C ~ TRATAMIENTOS, data = datos)
summary(res_anova11)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## TRATAMIENTOS  3  549.2  183.06   3.624 0.0453 *
## Residuals    12  606.2   50.52                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey11 <- TukeyHSD(res_anova11)
print(res_tukey11)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = ESTOMAS_C ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                  diff         lwr      upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    -7.50 -22.4216204  7.42162 0.4713759
## ROJA_CONTROL-AMARILLO_50_AS    -10.50 -25.4216204  4.42162 0.2112823
## VERDE_50_AS1000-AMARILLO_50_AS   4.25 -10.6716204 19.17162 0.8318936
## ROJA_CONTROL-AZUL_50_AS600      -3.00 -17.9216204 11.92162 0.9310698
## VERDE_50_AS1000-AZUL_50_AS600   11.75  -3.1716204 26.67162 0.1436312
## VERDE_50_AS1000-ROJA_CONTROL    14.75  -0.1716204 29.67162 0.0530326
dt11 <- duncan.test(res_anova11, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova11 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for ESTOMAS_C 
## 
## Mean Square Error:  50.52083 
## 
## TRATAMIENTOS,  means
## 
##                 ESTOMAS_C      std r Min Max
## AMARILLO_50_AS      19.75 5.188127 4  12  23
## AZUL_50_AS600       12.25 8.301606 4   3  23
## ROJA_CONTROL         9.25 9.251126 4   3  23
## VERDE_50_AS1000     24.00 4.546061 4  19  30
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 10.95066 11.46219 11.77213 
## 
## Means with the same letter are not significantly different.
## 
##                 ESTOMAS_C groups
## VERDE_50_AS1000     24.00      a
## AMARILLO_50_AS      19.75     ab
## AZUL_50_AS600       12.25      b
## ROJA_CONTROL         9.25      b
plot(dt11)

*ESTOMAS TOTALES

res_anova112 <- aov(ESTOMAS_A ~ TRATAMIENTOS, data = datos)
summary(res_anova112)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3  155.5   51.83   1.697   0.22
## Residuals    12  366.5   30.54
res_tukey112 <- TukeyHSD(res_anova112)
print(res_tukey112)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = ESTOMAS_A ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                 diff        lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    8.50  -3.101846 20.101846 0.1853788
## ROJA_CONTROL-AMARILLO_50_AS     5.25  -6.351846 16.851846 0.5549126
## VERDE_50_AS1000-AMARILLO_50_AS  6.25  -5.351846 17.851846 0.4148246
## ROJA_CONTROL-AZUL_50_AS600     -3.25 -14.851846  8.351846 0.8385065
## VERDE_50_AS1000-AZUL_50_AS600  -2.25 -13.851846  9.351846 0.9374523
## VERDE_50_AS1000-ROJA_CONTROL    1.00 -10.601846 12.601846 0.9938059
dt112 <- duncan.test(res_anova112, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova112 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for ESTOMAS_A 
## 
## Mean Square Error:  30.54167 
## 
## TRATAMIENTOS,  means
## 
##                 ESTOMAS_A      std r Min Max
## AMARILLO_50_AS       9.00 6.633250 4   4  18
## AZUL_50_AS600       17.50 4.358899 4  11  20
## ROJA_CONTROL        14.25 5.123475 4   9  20
## VERDE_50_AS1000     15.25 5.737305 4   8  22
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 8.514346 8.912076 9.153056 
## 
## Means with the same letter are not significantly different.
## 
##                 ESTOMAS_A groups
## AZUL_50_AS600       17.50      a
## VERDE_50_AS1000     15.25      a
## ROJA_CONTROL        14.25      a
## AMARILLO_50_AS       9.00      a
plot(dt112)

AREA FOLIAR

res_anova12 <- aov(AREA_FOLIAR ~ TRATAMIENTOS, data = datos)
summary(res_anova12)
##              Df Sum Sq Mean Sq F value  Pr(>F)   
## TRATAMIENTOS  3   4223  1407.6   8.526 0.00265 **
## Residuals    12   1981   165.1                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey12 <- TukeyHSD(res_anova12)
print(res_tukey12)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = AREA_FOLIAR ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                    diff        lwr        upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS   -10.9575 -37.932608  16.017608 0.6348450
## ROJA_CONTROL-AMARILLO_50_AS     24.5050  -2.470108  51.480108 0.0795494
## VERDE_50_AS1000-AMARILLO_50_AS -18.4725 -45.447608   8.502608 0.2296943
## ROJA_CONTROL-AZUL_50_AS600      35.4625   8.487392  62.437608 0.0097795
## VERDE_50_AS1000-AZUL_50_AS600   -7.5150 -34.490108  19.460108 0.8406491
## VERDE_50_AS1000-ROJA_CONTROL   -42.9775 -69.952608 -16.002392 0.0023759
dt12 <- duncan.test(res_anova12, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova12 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for AREA_FOLIAR 
## 
## Mean Square Error:  165.1068 
## 
## TRATAMIENTOS,  means
## 
##                 AREA_FOLIAR       std r   Min    Max
## AMARILLO_50_AS      69.9900 13.001769 4 56.30  87.36
## AZUL_50_AS600       59.0325  8.898945 4 51.25  71.77
## ROJA_CONTROL        94.4950 10.361346 4 86.69 108.71
## VERDE_50_AS1000     51.5175 17.459451 4 26.78  66.50
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 19.79645 20.72120 21.28150 
## 
## Means with the same letter are not significantly different.
## 
##                 AREA_FOLIAR groups
## ROJA_CONTROL        94.4950      a
## AMARILLO_50_AS      69.9900      b
## AZUL_50_AS600       59.0325      b
## VERDE_50_AS1000     51.5175      b
plot(dt12)

AREA BAJO EL DOSEL

res_anova13 <- aov(A_DOSEL ~ TRATAMIENTOS, data = datos)
summary(res_anova13)
##              Df Sum Sq Mean Sq F value  Pr(>F)   
## TRATAMIENTOS  3   9529    3176   7.185 0.00511 **
## Residuals    12   5305     442                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_tukey13 <- TukeyHSD(res_anova13)
print(res_tukey13)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = A_DOSEL ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                    diff        lwr       upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    -2.5625  -46.70228  41.57728 0.9980756
## ROJA_CONTROL-AMARILLO_50_AS     54.6075   10.46772  98.74728 0.0146180
## VERDE_50_AS1000-AMARILLO_50_AS  -2.5375  -46.67728  41.60228 0.9981309
## ROJA_CONTROL-AZUL_50_AS600      57.1700   13.03022 101.30978 0.0108146
## VERDE_50_AS1000-AZUL_50_AS600    0.0250  -44.11478  44.16478 1.0000000
## VERDE_50_AS1000-ROJA_CONTROL   -57.1450 -101.28478 -13.00522 0.0108464
dt13 <- duncan.test(res_anova13, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova13 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for A_DOSEL 
## 
## Mean Square Error:  442.078 
## 
## TRATAMIENTOS,  means
## 
##                  A_DOSEL      std r   Min    Max
## AMARILLO_50_AS   54.0775 16.75190 4 34.96  71.77
## AZUL_50_AS600    51.5150 16.14043 4 32.80  68.49
## ROJA_CONTROL    108.6850 26.06204 4 89.53 146.80
## VERDE_50_AS1000  51.5400 23.40818 4 26.86  79.02
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 32.39324 33.90642 34.82324 
## 
## Means with the same letter are not significantly different.
## 
##                  A_DOSEL groups
## ROJA_CONTROL    108.6850      a
## AMARILLO_50_AS   54.0775      b
## VERDE_50_AS1000  51.5400      b
## AZUL_50_AS600    51.5150      b
plot(dt13)

CONTENIDO RELATIVO DE AGUA

res_anova14 <- aov(CRA ~ TRATAMIENTOS, data = datos)
summary(res_anova14)
##              Df Sum Sq Mean Sq F value Pr(>F)
## TRATAMIENTOS  3  157.5   52.51   2.107  0.153
## Residuals    12  299.1   24.92
res_tukey14 <- TukeyHSD(res_anova14)
print(res_tukey14)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = CRA ~ TRATAMIENTOS, data = datos)
## 
## $TRATAMIENTOS
##                                    diff       lwr      upr     p adj
## AZUL_50_AS600-AMARILLO_50_AS    5.24375  -5.23634 15.72384 0.4750532
## ROJA_CONTROL-AMARILLO_50_AS     7.39750  -3.08259 17.87759 0.2092301
## VERDE_50_AS1000-AMARILLO_50_AS  0.48500  -9.99509 10.96509 0.9990203
## ROJA_CONTROL-AZUL_50_AS600      2.15375  -8.32634 12.63384 0.9268977
## VERDE_50_AS1000-AZUL_50_AS600  -4.75875 -15.23884  5.72134 0.5522466
## VERDE_50_AS1000-ROJA_CONTROL   -6.91250 -17.39259  3.56759 0.2562321
dt14 <- duncan.test(res_anova14, 'TRATAMIENTOS', console = T)
## 
## Study: res_anova14 ~ "TRATAMIENTOS"
## 
## Duncan's new multiple range test
## for CRA 
## 
## Mean Square Error:  24.92118 
## 
## TRATAMIENTOS,  means
## 
##                      CRA      std r    Min    Max
## AMARILLO_50_AS  69.61375 3.483046 4 64.750 72.895
## AZUL_50_AS600   74.85750 4.481678 4 70.260 80.910
## ROJA_CONTROL    77.01125 7.823067 4 66.050 83.225
## VERDE_50_AS1000 70.09875 2.503456 4 68.125 73.765
## 
## Alpha: 0.05 ; DF Error: 12 
## 
## Critical Range
##        2        3        4 
## 7.691113 8.050388 8.268067 
## 
## Means with the same letter are not significantly different.
## 
##                      CRA groups
## ROJA_CONTROL    77.01125      a
## AZUL_50_AS600   74.85750      a
## VERDE_50_AS1000 70.09875      a
## AMARILLO_50_AS  69.61375      a
plot(dt14)