library(flexdashboard)
library(readr)
bmi <- read_csv("~/kaggle_data_set/bmi.csv")
## Rows: 741 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): BmiClass
## dbl (4): Age, Height, Weight, Bmi
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
summary(bmi)
## Age Height Weight Bmi
## Min. :15.00 Min. :1.460 Min. : 25.90 Min. :12.15
## 1st Qu.:22.00 1st Qu.:1.670 1st Qu.: 63.00 1st Qu.:22.13
## Median :29.00 Median :1.721 Median : 72.90 Median :24.13
## Mean :31.62 Mean :1.709 Mean : 78.41 Mean :26.37
## 3rd Qu.:40.00 3rd Qu.:1.751 3rd Qu.: 83.30 3rd Qu.:27.25
## Max. :61.00 Max. :2.070 Max. :270.00 Max. :66.30
## BmiClass
## Length:741
## Class :character
## Mode :character
##
##
##
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
plot<-bmi%>%ggplot(aes(bmi$Height,bmi$Weight))+geom_point()+geom_smooth(method = "lm",sd=0)+theme_minimal()
## Warning in geom_smooth(method = "lm", sd = 0): Ignoring unknown parameters:
## `sd`
plot
## `geom_smooth()` using formula = 'y ~ x'

lot<-bmi%>%ggplot(aes(Weight))+geom_histogram(fill='BLUE')+theme_minimal()
lot
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ot<-bmi%>%ggplot(aes(BmiClass,Weight))+geom_boxplot(color='purple',fill="orange")+theme_minimal()
ot

t<-bmi%>%ggplot(aes(Height,fill=BmiClass))+geom_density()
t
