## Loading required package: MASS
## Loading required package: HistData
## Loading required package: Hmisc
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
## child parent
## 1 61.7 70.5
## 2 61.7 68.5
## 3 61.7 65.5
## 4 61.7 64.5
## 5 61.7 64.0
## 6 62.2 67.5
The mean of the child and the parent’s height.
## child parent
## Min. :61.70 Min. :64.00
## 1st Qu.:66.20 1st Qu.:67.50
## Median :68.20 Median :68.50
## Mean :68.09 Mean :68.31
## 3rd Qu.:70.20 3rd Qu.:69.50
## Max. :73.70 Max. :73.00
The standard deviation of the height of the child and the parent respectively.
## [1] 2.517941
## [1] 1.787333
correlation between the parental and child heights.
## child parent
## child 1.0000000 0.4587624
## parent 0.4587624 1.0000000
## [1] 70.5 68.5 65.5 64.5 64.0 67.5 67.5 67.5 66.5 66.5
## [1] 61.7 61.7 61.7 61.7 61.7 62.2 62.2 62.2 62.2 62.2
## [1] 9.775954e-16
## [1] 39.44424 38.32525 36.64677 36.08728 35.80753 37.76576 37.76576 37.76576
## [9] 37.20626 37.20626 37.20626 36.08728 39.44424 38.88474 38.32525 38.32525
## [17] 38.32525 38.32525 38.32525 38.32525 38.32525 37.76576 37.76576 37.76576
## [25] 37.76576 37.76576 37.20626 37.20626 37.20626 36.64677 36.64677 36.64677
## [33] 36.64677 36.64677 36.64677 36.64677 36.64677 36.64677 36.08728 36.08728
## [41] 36.08728 36.08728 35.80753 35.80753 38.88474 38.88474 38.88474 38.88474
## [49] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [57] 38.88474 38.88474 38.88474 38.88474 38.32525 38.32525 38.32525 38.32525
## [65] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 37.76576
## [73] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [81] 37.76576 37.76576 37.76576 37.76576 37.76576 37.20626 37.20626 37.20626
## [89] 37.20626 37.20626 36.64677 36.64677 36.64677 36.64677 36.64677 36.08728
## [97] 36.08728 36.08728 36.08728 35.80753 35.80753 35.80753 35.80753 40.00373
## [105] 39.44424 38.88474 38.88474 38.88474 38.88474 38.32525 38.32525 38.32525
## [113] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [121] 38.32525 38.32525 38.32525 38.32525 38.32525 37.76576 37.76576 37.76576
## [129] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [137] 37.76576 37.76576 37.76576 37.76576 37.20626 37.20626 36.64677 36.64677
## [145] 36.64677 36.64677 36.64677 36.64677 36.64677 36.08728 35.80753 40.00373
## [153] 40.00373 40.00373 39.44424 38.88474 38.88474 38.88474 38.88474 38.88474
## [161] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [169] 38.88474 38.88474 38.88474 38.88474 38.32525 38.32525 38.32525 38.32525
## [177] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [185] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [193] 38.32525 38.32525 38.32525 38.32525 38.32525 37.76576 37.76576 37.76576
## [201] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [209] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [217] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [225] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [233] 37.76576 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626
## [241] 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626
## [249] 37.20626 37.20626 36.64677 36.64677 36.64677 36.64677 36.64677 36.64677
## [257] 36.64677 36.64677 36.64677 36.64677 36.64677 36.08728 36.08728 36.08728
## [265] 36.08728 36.08728 35.80753 35.80753 40.00373 40.00373 40.00373 40.00373
## [273] 39.44424 39.44424 39.44424 38.88474 38.88474 38.88474 38.88474 38.88474
## [281] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [289] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [297] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.32525 38.32525
## [305] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [313] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [321] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [329] 38.32525 38.32525 38.32525 38.32525 38.32525 37.76576 37.76576 37.76576
## [337] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [345] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [353] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [361] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [369] 37.76576 37.76576 37.76576 37.20626 37.20626 37.20626 37.20626 37.20626
## [377] 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626
## [385] 37.20626 37.20626 37.20626 37.20626 36.64677 36.64677 36.64677 36.64677
## [393] 36.64677 36.64677 36.64677 36.64677 36.64677 36.64677 36.64677 36.08728
## [401] 36.08728 36.08728 36.08728 36.08728 35.80753 35.80753 40.56322 40.00373
## [409] 40.00373 40.00373 39.44424 39.44424 39.44424 39.44424 39.44424 39.44424
## [417] 39.44424 39.44424 39.44424 39.44424 39.44424 39.44424 38.88474 38.88474
## [425] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [433] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [441] 38.88474 38.88474 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [449] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [457] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [465] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [473] 38.32525 38.32525 38.32525 38.32525 37.76576 37.76576 37.76576 37.76576
## [481] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [489] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [497] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [505] 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626
## [513] 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626 36.64677 36.64677
## [521] 36.64677 36.64677 36.64677 36.64677 36.64677 35.80753 40.56322 40.56322
## [529] 40.00373 40.00373 40.00373 40.00373 40.00373 39.44424 39.44424 39.44424
## [537] 39.44424 39.44424 39.44424 39.44424 39.44424 39.44424 39.44424 39.44424
## [545] 39.44424 39.44424 39.44424 39.44424 39.44424 39.44424 39.44424 38.88474
## [553] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [561] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [569] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [577] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [585] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [593] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [601] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [609] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [617] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [625] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [633] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [641] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [649] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [657] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [665] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.20626 37.20626
## [673] 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626 37.20626
## [681] 37.20626 37.20626 37.20626 36.64677 36.64677 36.64677 36.64677 36.64677
## [689] 36.64677 36.64677 36.08728 36.08728 35.80753 40.56322 40.00373 40.00373
## [697] 40.00373 40.00373 40.00373 40.00373 40.00373 40.00373 40.00373 40.00373
## [705] 39.44424 39.44424 39.44424 39.44424 39.44424 39.44424 39.44424 39.44424
## [713] 39.44424 39.44424 39.44424 39.44424 39.44424 39.44424 38.88474 38.88474
## [721] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [729] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [737] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.32525
## [745] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [753] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [761] 38.32525 38.32525 38.32525 38.32525 37.76576 37.76576 37.76576 37.76576
## [769] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576
## [777] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 37.20626
## [785] 37.20626 37.20626 37.20626 36.64677 36.64677 36.64677 36.64677 36.64677
## [793] 40.56322 40.56322 40.00373 40.00373 40.00373 40.00373 39.44424 39.44424
## [801] 39.44424 39.44424 39.44424 39.44424 39.44424 38.88474 38.88474 38.88474
## [809] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [817] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [825] 38.88474 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [833] 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525 38.32525
## [841] 38.32525 38.32525 38.32525 37.76576 37.76576 37.76576 37.76576 37.76576
## [849] 37.76576 37.76576 37.76576 37.76576 37.76576 37.76576 36.64677 36.64677
## [857] 40.84297 40.56322 40.56322 40.56322 40.56322 40.56322 40.56322 40.56322
## [865] 40.00373 40.00373 40.00373 40.00373 40.00373 40.00373 40.00373 40.00373
## [873] 40.00373 39.44424 39.44424 39.44424 39.44424 38.88474 38.88474 38.88474
## [881] 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474 38.88474
## [889] 38.32525 38.32525 38.32525 38.32525 37.76576 37.76576 37.76576 37.76576
## [897] 36.64677 40.84297 40.84297 40.84297 40.56322 40.56322 40.00373 40.00373
## [905] 39.44424 39.44424 39.44424 38.88474 38.88474 38.88474 38.88474 38.32525
## [913] 38.32525 38.32525 40.56322 40.56322 40.56322 40.56322 40.00373 40.00373
## [921] 39.44424 39.44424 39.44424 38.88474 38.88474 38.88474 38.88474 38.88474
Emperical Standard Deviation
## [1] 1
## [1] 70.5 68.5 65.5 64.5 64.0 67.5 67.5 67.5 66.5 66.5
## [1] 61.7 61.7 61.7 61.7 61.7 62.2 62.2 62.2 62.2 62.2
Normalized variables have mean 0.
## [1] 5.501733e-16
## [1] 2.183943e-16
Standard deviation 1.
## [1] 1
## [1] 1
The correlation between the child and parent’s height.
## [1] 0.4587624
## [1] 0.4587624
## (Intercept) fheight
## [1,] 33.8866 0.514093
## [2,] 33.8866 0.514093
## `geom_smooth()` using formula = 'y ~ x'
##
## Call:
## lm(formula = sheight ~ fheight, data = father.son)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.8772 -1.5144 -0.0079 1.6285 8.9685
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.88660 1.83235 18.49 <2e-16 ***
## fheight 0.51409 0.02705 19.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.437 on 1076 degrees of freedom
## Multiple R-squared: 0.2513, Adjusted R-squared: 0.2506
## F-statistic: 361.2 on 1 and 1076 DF, p-value: < 2.2e-16
father’s height coeffecient is 0.514, let us refit to show that it is the same
## [1] 0.514093
##
## Call:
## lm(formula = yN ~ xN)
##
## Coefficients:
## (Intercept) xN
## 1.820e-15 5.013e-01
taking the correlation,
## [1] 0.5013383
## 1
## 66.27447
so the son’s height is around 66.27
sd(y) = sd(x) => sd(y)/sd(x) = 2
we have cor(y,x) = 3 so, the estimate of the slope would be
cor(y,x)(sd(y)/sd(x)) = (0.3)2 = 0.6
recall that the formula of slope is, \[ \beta_0 = \bar Y - \hat \beta_1 \bar X\] 1 - 0.6(0.5) = 0.7
recall that our intercept is, \[\hat \beta_0 = \bar Y - \hat \beta_1 \bar X\] if mean is zero then, \[\hat \beta_1 \bar X = 0\] and, \[\hat \beta_0 = \bar Y \].
Hence, True.
Cor(x, y) (sd(x)/sd(y)) = 0.3(0.5) = 0.15
Let us have scale 1 in y-axis and scale 2 in x-axis, we need to normalize it so the center of the axis falls right in the mean of the data and the std of horizontal and vertical line is 1.correlation would be the best fitting regression line.
we need to standard deviations, that would be 2(0.75) = 1.5
correlation = 0.2 so,
(0.2)(8/10) = 1.6
0.16 X 30 = 4.8 above the mean.
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.886604 1.83235382 18.49348 1.604044e-66
## fheight 0.514093 0.02704874 19.00618 1.121268e-69
Sheight = \[\beta_{0} + \beta_1 (fheight) + error$\\]
H_0 : \[\beta_1\] = 0
H_a: \[\beta_1\] not equal to zero
notice that fheight has a t-value of 19 and the p-value is 1.121-69, hence we can say that we fail to reject the alternative hypothesis. Thus, there is a significant difference between the father’s height and the son’s height.
In the intercept if the son’s height is 33 when the father is 0 inches, but we can’t have 0 inches, we might want to recenter the father’s height.
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 68.684070 0.07421078 925.52689 0.000000e+00
## I(fheight - mean(fheight)) 0.514093 0.02704874 19.00618 1.121268e-69
The slope did not change, recentering around the regressor will have no impact on the slope estimate scaling the regressor will of course change the slope . At 69 inches, the estimated son’s height at the average father’s height is 69.
## 1
## 68.68407
If the father’s height is 80, the son’s height would be 75 inches. With this prediction, we are not really sure if the maximum height of the father’s data exceeds or exactly is 80.
## fheight sheight
## Min. :59.01 Min. :58.51
## 1st Qu.:65.79 1st Qu.:66.93
## Median :67.77 Median :68.62
## Mean :67.69 Mean :68.68
## 3rd Qu.:69.60 3rd Qu.:70.47
## Max. :75.43 Max. :78.36
As we can see in the data that the maximum height of the data of the father is 75. so I would not recommend this prediction.
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 30.09886054 1.6339210 18.421246 6.642736e-18
## hp -0.06822828 0.0101193 -6.742389 1.787835e-07
When a car has zero horsepower, the model estimates the miles per gallon to be 30.The horsepower of a car increases, the model predicts that the fuel efficiency will decrease by 0.06 miles per gallon, all else being equal.
## `geom_smooth()` using formula = 'y ~ x'
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 30.09886054 1.6339210 18.421246 6.642736e-18
## hp -0.06822828 0.0101193 -6.742389 1.787835e-07
as we can see that the horsepower’s p-value is 1.787 x 10^-7 , which is less than we say our level of significance is 0.05, thus we reject the null hypothesis.
## 1
## 22.52552
## [1] 1.148526e-13
## [1] 5.936804
## [1] 5.936804
## [1] 0.2513401
## [1] 14.92248
## [1] 14.92248
## [1] 0.6024373