Una Serie de tiempo es una coleccion de observaciones sobre un determinado fenomeno efectuadas en momentos sucesivos, usualmente equiespaciados.
Ejemplos de serie de tiempo son: 1. Precio de acciones 2. Niveles de inventario 3. Rotacion de personal
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
# ARIMA: AutoRegressive Integrated Moving Average.
modelo <- auto.arima(serie_de_tiempo, D=1)
modelo## Series: serie_de_tiempo
## ARIMA(0,0,0)(0,1,0)[4] with drift
##
## Coefficients:
## drift
## 1.5000
## s.e. 0.1768
##
## sigma^2 = 2.01: log likelihood = -2.84
## AIC=9.68 AICc=-2.32 BIC=7.06
El Banco Mundial es un organismo multinacional especializado en finanzas. En R se puede acceder a sus indicadores a traves de la libreria WBI
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# Paso 1 - Obtener los valores dependientes
gdp_data <-wb_data(country = "MX", indicator = "NY.GDP.MKTP.CD",start_date = 1973, end_date = 2022)
gdp_data <-gdp_data %>% select(date,NY.GDP.MKTP.CD)
# Paso 2 - Agregar los valores su tiempo correspondiente
serie_wb <- ts(data = gdp_data$NY.GDP.MKTP.CD, start = c(1973, 1), frequency = 1)
serie_wb## Time Series:
## Start = 1973
## End = 2022
## Frequency = 1
## [1] 5.528021e+10 7.200018e+10 8.800000e+10 8.887679e+10 8.191250e+10
## [6] 1.026473e+11 1.345296e+11 2.055770e+11 2.638021e+11 1.846036e+11
## [11] 1.561675e+11 1.842312e+11 1.952414e+11 1.345561e+11 1.475426e+11
## [16] 1.816112e+11 2.214031e+11 2.612537e+11 3.131397e+11 3.631578e+11
## [21] 5.007334e+11 5.278106e+11 3.600725e+11 4.109730e+11 5.004160e+11
## [26] 5.264997e+11 6.002330e+11 7.079099e+11 7.567029e+11 7.721097e+11
## [31] 7.293350e+11 7.822429e+11 8.774769e+11 9.753834e+11 1.052697e+12
## [36] 1.109987e+12 9.000470e+11 1.057801e+12 1.180487e+12 1.201094e+12
## [41] 1.274444e+12 1.315356e+12 1.171870e+12 1.078493e+12 1.158912e+12
## [46] 1.222406e+12 1.269010e+12 1.090515e+12 1.272839e+12 1.414187e+12
## attr(,"label")
## [1] GDP (current US$)
## Point Forecast Lo 95 Hi 95
## 2023 1.433926e+12 980290613738 1.887562e+12
## 2024 1.453677e+12 803569237132 2.103785e+12
## 2025 1.473429e+12 666598328083 2.280259e+12
## 2026 1.493180e+12 549162790199 2.437197e+12
## 2027 1.512931e+12 443534373245 2.582327e+12
## Series: serie_wb
## ARIMA(0,1,0)
##
## sigma^2 = 7.381e+21: log likelihood = -1303.18
## AIC=2608.36 AICc=2608.44 BIC=2610.25
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 27179245230 85046847387 67623045592 4.943879 14.05421 0.980016
## ACF1
## Training set -0.01519178