Series de Tiempo
Cargando librerias
## Warning: package 'forecast' was built under R version 4.1.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
Ejemplo serie de tiempo
produccion <- c(50,53,55,57,53,60)
serie_de_tiempo <- ts(data=produccion, start = c(2020,1), frequency = 4)
serie_de_tiempo
## Qtr1 Qtr2 Qtr3 Qtr4
## 2020 50 53 55 57
## 2021 53 60
Crear modelo ARIMA
modelo <- auto.arima(serie_de_tiempo, D = 1)
modelo
## Series: serie_de_tiempo
## ARIMA(0,0,0)(0,1,0)[4] with drift
##
## Coefficients:
## drift
## 1.2500
## s.e. 0.3536
##
## sigma^2 = 8.01: log likelihood = -4.22
## AIC=12.45 AICc=0.45 BIC=9.83
## Series: serie_de_tiempo
## ARIMA(0,0,0)(0,1,0)[4] with drift
##
## Coefficients:
## drift
## 1.2500
## s.e. 0.3536
##
## sigma^2 = 8.01: log likelihood = -4.22
## AIC=12.45 AICc=0.45 BIC=9.83
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.03374998 1.155441 0.7004166 -0.01050981 1.247352 0.1400833
## ACF1
## Training set -0.5041734
Realizar el pronostico
pronostico <- forecast(modelo, level = c(95), h = 5)
pronostico
## Point Forecast Lo 95 Hi 95
## 2021 Q3 60 54.45283 65.54717
## 2021 Q4 62 56.45283 67.54717
## 2022 Q1 58 52.45283 63.54717
## 2022 Q2 65 59.45283 70.54717
## 2022 Q3 65 57.15512 72.84488

LS0tDQp0aXRsZTogIlNlcmllcyBkZSBUaWVtcG8iDQphdXRob3I6ICJQZWRybyBNYXhpbWlsaWFubyBXaWxsbWFuIEhlcm5hbmRleiINCmRhdGU6ICIyMDIzLTEwLTA5Ig0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogVFJVRSANCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6ICJib290c3RyYXAiDQogICAgaGlnaGxpZ2h0OiAiZXNwcmVzc28iDQotLS0NCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IG9yYW5nZTsiPlNlcmllcyBkZSBUaWVtcG88L3NwYW4+DQojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBvcmFuZ2U7Ij5DYXJnYW5kbyBsaWJyZXJpYXM8L3NwYW4+DQpgYGB7cn0NCmxpYnJhcnkoZm9yZWNhc3QpDQpgYGANCg0KIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogb3JhbmdlOyI+RWplbXBsbyBzZXJpZSBkZSB0aWVtcG88L3NwYW4+DQpgYGB7cn0NCnByb2R1Y2Npb24gPC0gYyg1MCw1Myw1NSw1Nyw1Myw2MCkNCnNlcmllX2RlX3RpZW1wbyA8LSB0cyhkYXRhPXByb2R1Y2Npb24sIHN0YXJ0ID0gYygyMDIwLDEpLCBmcmVxdWVuY3kgPSA0KQ0Kc2VyaWVfZGVfdGllbXBvDQpgYGANCg0KIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogb3JhbmdlOyI+Q3JlYXIgbW9kZWxvIEFSSU1BPC9zcGFuPg0KYGBge3J9DQptb2RlbG8gPC0gYXV0by5hcmltYShzZXJpZV9kZV90aWVtcG8sIEQgPSAxKQ0KbW9kZWxvDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KG1vZGVsbykNCmBgYA0KDQojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBvcmFuZ2U7Ij5SZWFsaXphciBlbCBwcm9ub3N0aWNvPC9zcGFuPg0KYGBge3J9DQpwcm9ub3N0aWNvIDwtIGZvcmVjYXN0KG1vZGVsbywgbGV2ZWwgPSBjKDk1KSwgaCA9IDUpDQpwcm9ub3N0aWNvDQpgYGANCg0KYGBge3J9DQpwbG90KHByb25vc3RpY28pDQpgYGANCg0KDQo=