
Redes Neuronales
Concepto
Una Red Neural Artificial (ANN) modela la relación entre un conjunto
de entradas y una salida, resolviendo un problema de aprendizaje.
Ejemplos de aplicación de Redes Neuronales son:
1. La recomendación de contenido de Netflix.
2. El feed de Instagram o TikTok.
3. Determinar el número o letra escrito a mano.
1. Instalar paquetes y llamar
librerias
# install.packages("neuralnet")
library(neuralnet)
2. Alimentar con ejemplos
examen <- c(20,10,30,20,80,30)
proyecto <- c(90,20,40,50,50,80)
estatus <- c(1,0,0,0,0,1)
clase <- data.frame(examen,proyecto,estatus)
3. Generar la red neuronal
red_neuronal <- neuralnet(estatus~., data=clase)
plot(red_neuronal, rep = "best")

4. Predecir con la Red
Neuronal
prueba_examen <- c(30,40,85)
prueba_proyecto <- c(85,50,40)
prueba <- data.frame(prueba_examen,prueba_proyecto)
prediccion <- compute(red_neuronal, prueba)
prediccion$net.result
## [,1]
## [1,] 1.01905190
## [2,] -0.01317624
## [3,] -0.01326113
probabilidad <- prediccion$net.result
resultado <- ifelse(probabilidad>0.5,1,0)
resultado
## [,1]
## [1,] 1
## [2,] 0
## [3,] 0
Cáncer de mama
1. Limpieza de la base de
datos
clase2 <- read.csv("/Users/alejandromontano/Desktop/cancer_de_mama.csv")
clase2$diagnosis <- ifelse(clase2$diagnosis == "M",1,0)
2. Alimentar con ejemplos
red_neuronal <- neuralnet(diagnosis~., data = clase2)
plot(red_neuronal, rep = "best")

3. Generar la red neuronal
test <- clase2[c(19,20,21,22,23),]
prediccion <- compute(red_neuronal,test)
prediccion$net.result
## [,1]
## 19 0.3725717
## 20 0.3725717
## 21 0.3725717
## 22 0.3725717
## 23 0.3725717
4. Predecir con la red
neuronal
probabilidad <- prediccion$net.result
resultado <- ifelse(probabilidad>0.5,1,0)
resultado
## [,1]
## 19 0
## 20 0
## 21 0
## 22 0
## 23 0
LS0tCnRpdGxlOiAiQWN0aXZpZGFkIDQuNyBSZWRlcyBOZXVyb25hbGVzIgphdXRob3I6ICJKb3PDqSBBbGVqYW5kcm8gTW9udGHDsW8gIEEwMDgzMDQ4NiIKZGF0ZTogIjIwMjMtMTAtMDIiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFIAogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogInNwYWNlbGFiIgogICAgaGlnaGxpZ2h0OiAia2F0ZSIKLS0tCgohW10oL1VzZXJzL2FsZWphbmRyb21vbnRhbm8vRGVza3RvcC8wYzRmNjQxNGMyMTEwNWQ3ODhkNDdmY2ZhMzgxYmFlNy5naWYud2VicCkKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+UmVkZXMgTmV1cm9uYWxlczwvc3Bhbj4KCiMjICA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5Db25jZXB0bzwvc3Bhbj4KVW5hIFJlZCBOZXVyYWwgQXJ0aWZpY2lhbCAoQU5OKSBtb2RlbGEgbGEgcmVsYWNpw7NuIGVudHJlIHVuIGNvbmp1bnRvIGRlIGVudHJhZGFzIHkgdW5hIHNhbGlkYSwgcmVzb2x2aWVuZG8gdW4gcHJvYmxlbWEgZGUgYXByZW5kaXphamUuICAKCkVqZW1wbG9zIGRlIGFwbGljYWNpw7NuIGRlIFJlZGVzIE5ldXJvbmFsZXMgc29uOiAgCjEuIExhIHJlY29tZW5kYWNpw7NuIGRlIGNvbnRlbmlkbyBkZSBOZXRmbGl4LiAgCjIuIEVsIGZlZWQgZGUgSW5zdGFncmFtIG8gVGlrVG9rLiAgCjMuIERldGVybWluYXIgZWwgbsO6bWVybyBvIGxldHJhIGVzY3JpdG8gYSBtYW5vLiAgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4xLiBJbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXJpYXM8L3NwYW4+CmBgYHtyfQojIGluc3RhbGwucGFja2FnZXMoIm5ldXJhbG5ldCIpCmxpYnJhcnkobmV1cmFsbmV0KQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjIuIEFsaW1lbnRhciBjb24gZWplbXBsb3M8L3NwYW4+CmBgYHtyfQpleGFtZW4gPC0gYygyMCwxMCwzMCwyMCw4MCwzMCkKcHJveWVjdG8gPC0gYyg5MCwyMCw0MCw1MCw1MCw4MCkKZXN0YXR1cyA8LSBjKDEsMCwwLDAsMCwxKQpjbGFzZSA8LSBkYXRhLmZyYW1lKGV4YW1lbixwcm95ZWN0byxlc3RhdHVzKQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjMuIEdlbmVyYXIgbGEgcmVkIG5ldXJvbmFsPC9zcGFuPgpgYGB7cn0KcmVkX25ldXJvbmFsIDwtIG5ldXJhbG5ldChlc3RhdHVzfi4sIGRhdGE9Y2xhc2UpCnBsb3QocmVkX25ldXJvbmFsLCByZXAgPSAiYmVzdCIpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+NC4gUHJlZGVjaXIgY29uIGxhIFJlZCBOZXVyb25hbDwvc3Bhbj4KYGBge3J9CnBydWViYV9leGFtZW4gPC0gYygzMCw0MCw4NSkKcHJ1ZWJhX3Byb3llY3RvIDwtIGMoODUsNTAsNDApCnBydWViYSA8LSBkYXRhLmZyYW1lKHBydWViYV9leGFtZW4scHJ1ZWJhX3Byb3llY3RvKQpwcmVkaWNjaW9uIDwtIGNvbXB1dGUocmVkX25ldXJvbmFsLCBwcnVlYmEpCnByZWRpY2Npb24kbmV0LnJlc3VsdApwcm9iYWJpbGlkYWQgPC0gcHJlZGljY2lvbiRuZXQucmVzdWx0CnJlc3VsdGFkbyA8LSBpZmVsc2UocHJvYmFiaWxpZGFkPjAuNSwxLDApCnJlc3VsdGFkbwpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+Q8OhbmNlciBkZSBtYW1hPC9zcGFuPgoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+MS4gTGltcGllemEgZGUgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4KYGBge3J9CmNsYXNlMiA8LSByZWFkLmNzdigiL1VzZXJzL2FsZWphbmRyb21vbnRhbm8vRGVza3RvcC9jYW5jZXJfZGVfbWFtYS5jc3YiKQpjbGFzZTIkZGlhZ25vc2lzIDwtIGlmZWxzZShjbGFzZTIkZGlhZ25vc2lzID09ICJNIiwxLDApCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+Mi4gQWxpbWVudGFyIGNvbiBlamVtcGxvczwvc3Bhbj4KYGBge3J9CnJlZF9uZXVyb25hbCA8LSBuZXVyYWxuZXQoZGlhZ25vc2lzfi4sIGRhdGEgPSBjbGFzZTIpCnBsb3QocmVkX25ldXJvbmFsLCByZXAgPSAiYmVzdCIpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+My4gR2VuZXJhciBsYSByZWQgbmV1cm9uYWw8L3NwYW4+CmBgYHtyfQp0ZXN0IDwtIGNsYXNlMltjKDE5LDIwLDIxLDIyLDIzKSxdCnByZWRpY2Npb24gPC0gY29tcHV0ZShyZWRfbmV1cm9uYWwsdGVzdCkKcHJlZGljY2lvbiRuZXQucmVzdWx0CmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+NC4gUHJlZGVjaXIgY29uIGxhIHJlZCBuZXVyb25hbDwvc3Bhbj4KYGBge3J9CnByb2JhYmlsaWRhZCA8LSBwcmVkaWNjaW9uJG5ldC5yZXN1bHQKcmVzdWx0YWRvIDwtIGlmZWxzZShwcm9iYWJpbGlkYWQ+MC41LDEsMCkKcmVzdWx0YWRvCmBgYAoK